Pada kesempatan sebelumnya kita sudah cukup banyak membahas tentang rancangan percobaan (rancangan percobaan dasar) baik secara konsepsi maupun pengaplikasiannya dengan menggunakan software SPSS. Bagi para peneliti atau data master yang baru saja menemukan artikel ini, kita sarankan untuk mempelajari pembahasan kita tentang rancangan percobaan pada beberapa artikel sebelumnya.
Pada kesempatan kali ini kita akan coba membahas salah satu bagian dari fungsi ANOVA yang ada pada proses analisis data dengan rancangan percobaan. Kalau pada pembahasan sebelumnya kita mengetahui bahwa harus berhati-hati dengan pemilihan taraf perlakuan apakah itu random atau fixed (karena akan berpengaruh pada proses perhitungan), maka pada kesempatan kali ini kita akan coba uraikan secara singkat fungsi dari “Sum of Square (SS)” yang utamanya terlihat pada pemilihan opsi model pada software SPSS.
Perlu diketahui oleh peneliti atau data master bahwa fungsi pemilihan tipe Sum of Square (SS) sangat berpengaruh terutama ketika model rancangan percobaan yang digunakan memiliki lebih dari 2 (dua) perlakuan (percobaan faktorial). Dalam software SPSS peneliti atau data master bisa memilih dari tipe 1 sampai dengan tipe 4, akan tetapi pertanyaan mendasarnya adalah tipe mana yang cocok untuk rancangan percobaan dengan perlakuan tunggal dan mana yang cocok untuk rancangan percobaan dengan lebih dari 1 (satu) perlakuan (rancangan percobaan faktorial) serta dipertimbangkan pula faktor interaksi. Berikut kita akan ulas secara sederhana, penjelasan dan perkiraan kecocokan tipe Sum of Square (SS) pada jenis rancangan percobaan yang akan digunakan.
Sum of Square (SS) Tipe 1. Sequential
Secara definisi Sum of Square (SS) tipe 1 dimana Sum of Square (SS) tiap faktor/perlakuan merupakan penambahan perbaikan dari Sum of Square (SS) error (dalam tabel ANOVA terdapat Sum of Square (SS) error – Sum of Square (SS) error semakin terkoreksi) tiap kali pengaruh dari tiap faktor/perlakuan dimasukan kedalam model regresi. Oleh karenanya Sum of Square (SS) dapat dipandang sebagai pengurangan dari Sum of Square (SS) error yang didapat dari penambahan tiap faktor/perlakuan dari faktor-faktor/perlakuan-perlakuan yang sudah dimasukan sebelumnya.
Keunggulan Sum of Square (SS) tipe 1 : dimana Sum of Square (SS) untuk semua perlakuan di tambahkan kepada Sum of Square (SS) total, yang merupakan sebuah dekomposisi yang lengkap dari perkiraan Sum of Square (SS) dari keseluruhan model. Dan hal ini tidak sepenuhnya benar untuk tipe Sum of Square (SS) yang lainnya.
Kekurangan Sum of Square (SS) tipe 1 : Hipotesis yang disusun tergantung pada urutan perlakuan yang dispesifikan (urutan faktor/perlakuan dimasukan ke dalam model). Jika misal dalam pengujian ANOVA 2 arah dengan 2 (dua) model, pertama perlakuan A kemudian perlakuan B, lainnya perlakuan B kemudian perlakuan A, hasilnya tidak hanya bahwa Sum of Square (SS) tipe 1 untuk A berbeda di antara 2 (dua) model, akan tetapi tidak ada cara yang pasti untuk memperkirakan apakah Sum of Square (SS) akan naik atau turun ketika perlakuan A menjadi yang kedua dimasukan kedalam model setelah perlakuan B. Oleh karenanya Sum of Square (SS) tipe 1 sangat terbatas penggunaanya hanya untuk bentuk model yang pasti. Selain itu, Sum of Square (SS) tipe 1 tidak cocok digunakan untuk rancangan percobaan faktorial.
Sum of Square (SS) Tipe 2 : Hierarchical or Partially Sequential
Sum of Square (SS) tipe 2 adalah hasil reduksi dari residual error, oleh karena penambahan dari semua Sum of Square (SS) perlakuan lain ke dalam model kecuali Sum of Square (SS) yang berisi perlakuan yang diujikan. Atau dengan kata lain Sum of Square (SS) tipe 2 adalah hasil pengurangan dalam Sum of Square (SS) residual yang didapatkan dari hasil penambahan semua perlakuan yang dimasukan kedalam model, yang terdiri dari semua perlakuan yang tidak termasuk didalamnya perlakuan yang sedang diujikan. Sebuah interaksi dari suatu perlakuan memainkan perannya ketika semua perlakuan yang ada dimasukan ke dalam model.
Keunggulan Sum of Square (SS) tipe 2 : Cocok digunakan untuk pembentukan model dan pilihan “natural” untuk regresi. Paling powefull jika tidak ada interaksi dalam model. Dan tidak ada variasi dalam urutan yang mana dari perlakuan dimasukan ke dalam model.
Kekurangan Sum of Square (SS) tipe 2 : Tidak cocok untuk rancangan faktorial.
Sum of Square (SS) Tipe 3 : Marginal atau Orthogonal
Sum of Square (SS) tipe 3 memberikan Sum of Square (SS) yang akan diperoleh untuk tiap variabel jika variabel tersebut dimasukan terakhir ke dalam model. Untuk itu, pengaruh dari tiap variabel di evaluasi setelah semua faktor lainnya dihitung untuk Sum of Square (SS). Karenanya hasil dari tiap faktor adalah serupa dengan apa yang diperoleh dengan menggunakan analisis Sum of Square (SS) tipe 1 ketika perlakuan di masukan kedalam model sebagai urutan yang terakhir.
Keunggulan Sum of Square (SS) tipe 3 : Tidak bergantung pada ukuran sampel. Penaksiran pengaruh/effek perlakuan bukan merupakan sebuah fungsi frekuensi dari observasi dari grup mana pun. (misal : untuk data yang tidak seimbang, dimana kita memiliki observasi dalam grup yang tidak sama jumlahnya). Ketika tidak terdapat missing cell (data hilang) dalam rancangan percobaan, rata-rata dari subpopulasi-nya merupakan “least square mean”, yang merupakan penaksir tak bias dari marginal mean untuk rancangan percobaan.
Kekurangan Sum of Square (SS) tipe 3 : Menguji pengaruh utama perlakuan dimana hadir interaksi antar perlakuan dan tidak cocok untuk rancangan dengan missing cell (data hilang).
Sum of Square (SS) Tipe 4 : Goodnight or Balanced
Sama bervariasinya dengan Sum of Square (SS) tipe 3, akan tetapi tetapi dikhususkan untuk membangun model dengan adanya missing cells (data hilang).
……
Dari keempat tipe Sum of Square (SS) yang sudah kita uraiakan di atas, selanjutnya untuk penerapannya dapat dipamahi dan secara bijak diimplementasikan kepada data yang dimiliki. Ketepatan dalam pemilihan tipe Sum of Square (SS) harus diselaraskan dengan prioritas dari peneliti atau data master dalam mengeksplorasi pola jawaban atas rancangan percobaan yang ditetapkan di awal, atas pengaruh perlakuan yang khendak dicari dan ditemukan jawabannya.
Jika dilihat dari default software-software statistik, umumnya digunakan Sum of Square (SS) tipe 3 karena secara umum dapat mengakomodir berbagai jenis pencarian pemaknaan terhadap perlakuan-perlakuan (termasuk didalamnya interaksi).
Sumber :
Langsrud, Ø. (2003), ANOVA for Unbalanced Data: Use Type II Instead of Type III Sums of Squares, Statistics and Computing, 13, 163-167.
—————————————————————————————————————————————————————————
Jika rekan peneliti memerlukan bantuan Survey Lapangan, Survey Online ataupun Olah Data dapat menghubungi mobilestatistik.com di :
- WhatsApp : 081321709749
- Email : welcome@mobilestatistik.com
Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.
—————————————————————————————————————————————————————————