Rancangan Percobaan Faktorial

Rancangan Percobaan Faktorial

Pada pembahasan yang lalu kita sudah menyelesaikan pembahasan 2 rancangan dasar pada rumpun analisis rancangan percobaan yang harus peneliti ketahui dan pahami, karena dapat membantu memahami dan mengidentifikasi jenis dan pola data yang akan dihasilkan oleh penelitian dengan menggunakan rancangan percobaan. Dua teknik yang sebelumnya sudah kita bahas yaitu Rancangan Acak Lengkap (RAL) dan Rancangan Acak Kelompok (RAK). Bagi pembaca yang baru menemukan artikel ini silahkan untuk mempelajari dan memahami konsepsi dan aplikasi dengan menggunakan SPSS pada 4 artikel sebelumnya.

Desain Eksperimen Faktorial

Pada kesempatan kali ini kita akan coba ulas secara konsepsi jenis dari teknik rancangan percobaan lainnya yaitu percobaan factorial. Dalam pembahasan sebelumnya (RAL dan RAK) yang diulas hanyalah mengenai eksperimen dengan hanya melibatkan satu factor, yang secara umum dinyatakan dengan perlakuan, yang terdiri atas beberapa taraf. Analisis dilakukan untuk menyelidiki apakah terdapat perbedaan yang berarti mengenai rata-rata efek tiap taraf ataukah tidak. Akan tetapi sering terjadi bahwa kita ingin menyelidiki secara bersamaan efek beberapa factor yang berlainan, misalkan efek perubahan temperature, tekanan dan konsentrasi zak reaksi pada suatu proses kimia. Dalam hal ini tiap perlakuan merupakan kombinasi dari temperature, tekanan dan sejumlah konsentrasi zat reaksi. Apabila tiap factor terdiri dari beberapa taraf maka kombinasi tertentu dari taraf factor menentukan sebuah kombinasi perlakuan. Jika semua atau hampir semua kombinasi antar setiap factor kita perhatikan, maka eksperimen yang terjadi karenanya dinamakan eksperimen factorial. Dikatakan dengan cara lain, eksperimen factorial adalah eksperimen yang semua (hampir semua) taraf sebuah factor tertentu dikombinasikan atau disilangkan dengan semua (hampir semua) taraf tiap factor lainnya yang ada dalam eksperimen tersebut. Berdasarkan adanya banyak taraf dalam tiap factor, eksperimen ini sering diberi nama dengan menambahkan perkalian antara banyak factor yang satu dengan banyak taraf factor lainnya (misal : a x b taraf faktor).

Model dan Anova  Desain Eksperimen Faktorial

Sebagai misal akan diambil huruf-huruf besar A, B, C dan seterusnya untuk menyatakan factor pada umumnya. Misalkan suatu eksperimen meliputi dua factor A dan B yang masing-masing mempunyai taraf i = 1, 2, …, a dan j = 1, 2, …, b. Misal eksperimen dilakukan dengan menggunakan desain acak sempurna yang untuk tiap kombinasi perlakuan telah digunakan n buah observasi. Pengacakan dilakukan sempurna dalam tiap sel untuk n buah unit yang diambil secara acak dari populasinya. Pengamatan Yijk merupakan pengamatan ke k dari sejumlah n yang diambil secara acak dari populasi yang terjadi karena kombinasi perlakuan taraf I factor A dan taraf j factor B. Model yang digunakan untuk desain factorial a x b ini adalah

desain eksperimen faktorial

Yijk      = variable respon hasil observasi ke-k

µ          = rata-rata yang sebenarnya (konstan)

Ai        =  efek taraf ke i factor A

Bj         = efek taraf ke j factor B

ABij      = efek interaksi taraf ke i factor A dan taraf ke j factor B

ϵk(ij)      = efek unit eksperimen ke k dalam kombinasi perlakuan (ij)

Untuk memudahkan dalam pembacaan data hasil pengamatan pada desain eksperimen factorial, komponen hasil pengamatan berdasarkan atas taraf factor dari factor A dan taraf factor dari factor B, dapat disusun pada model table berikut.

Dengan format tabel data di atas dapat memudahkan untuk perhitungan secara manual untuk memperoleh tabel ANOVA dan nilai F statistik yang digunakan untuk pengujian hipotesis. (lebih lengkap tentang rumus perhitungan manual dapat dipelajari langsung pada buku rancangan percobaan). Selain itu format tabel di atas juga dapat membantu peneliti untuk mengidentifikasikan bahwa data penelitian yang disusun merupakan hasil dari pengamatan dengan teknik rancangan percobaan faktorial. Adapun table ANOVA yang digunakan dalam rancangan eskperimen factorial sebagai berikut.

Pada table ANOVA di atas terlihat bahwa efek perlakuan yang dihitung dan diujikan ada 2 macam yaitu efek tunggal masing-masing factor (A dan B) dan efek kombinasi dari factor-faktor (AB). Hal ini yang membedakan dengan pembahasan racangan eksperimen sebelumnya yang hanya menghitung dan mengujikan factor tunggal (RAL dan RAK). Hanya saja dalam aplikasinya rancangan eksperimen factorial akan tetap berlandasarkan pada RAL dan RAK. Oleh karenanya pemahaman yang baik pada rancangan eksperimen dasar (RAL dan RAK) sangat diperlukan.

Hal lainnya, pada table ANOVA di atas tampak bahwa untuk menghitung statistic F guna melakukan pengujian statistis, perlu diketahui model mana yang diambil. Model yang dimaksud ditentukan oleh sifat taraf tiap factor, apakah tetap atau acak. (seperti telah dijelaskan pada pembahasan rancangan eksperimen RAL dan RAK).

Dan ketentuan lain terkait dengan data hasil pengamatan atau unit pengamatan itu sendiri, bisa dilihat dari desain percobaan yang mendasarinya (apakah RAL atau RAK). Dan pembaca dapat membaca dan memahami hal tersebut pada pembahasan artikel kita sebelumnya.

Pada kesempatan selanjutkan kita akan coba uraikan tahapan dalam melakukan analisis rancangan eksperimen factorial dengan bantuan software SPSS. Sebagai catatan perlu dipahami secara benar tentang penggunaan dan kriteria unit percobaan serta kriteria perlakuan, agar tidak terjadi kekeliruan pengaplikasian pada data yang dimiliki oleh peneliti atau data master. SEMANGAT MEMAHAMI!!.

Sumber :

  • Sudjana, Desain dan Analisis Eksperimen

—————————————————————————————————————————————————————————-

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————————

Leave a Reply

Your email address will not be published. Required fields are marked *