Model Regresi Random Effect Pada Pool Data Eviews

Model Regresi Random Effect Pada Pool Data Eviews

Pada artikel sebelumnya kita sudah sedikit mengulas mengenai data panel aplikasinya pada software Eviews. Sedikit mereview kembali pemaparan sebelumnya bahwa terdapat 2 perlakukan pada data panel yakni sebagai pool data dan sebagai data panel itu sendiri. (untuk melihat perbedaan pada aplikasi Eviews, silahkan para peneliti atau data master baca artikel kita tentang “Mengenal Pool Data dan Data Panel Pada Eviews”). Dimana untuk masing-masing pengguanaan datanya terdapat ciri khas dan kekhususan tersendiri.

Pada kesempatan kali ini kita akan coba paparkan satu analisis regresi dengan menggunakan pool data dengan menggunakan metode Random Effect (pada artikel sebelumnya bahwa dengan menggunakan pool data setidakanya ada 2 model tambahan yang dapat dibentuk merujuk pada jenis data pool yakni model dengan fixed effect dan model dengan random effect).

Efek random digunakan untuk mengatasi kelemahan metode efek tetap yang menggunakan variabel dummy (Baca artikel : Model Regresi Fixed Effect Pada Pool Data Eviews), metode efek random menggunakan residual, yang diduga memiliki hubungan antarwaktu dan antarobjek. Namun untuk menganalisis dengan metode efek random ada satu syarat yakni objek data silang (cross section) harus lebih besar dari pada banyaknya koefisien.

Berikut disajikan secara bertahap analisis data panel dengan metode analisis pada pool data dengan menggunakan Eviews.

Input Data Pool

Merujuk pada data artikel sebelumnya, (Baca artikel : Model Regresi Fixed Effect Pada Pool Data Eviews) apabila pada analisis regresi dengan data silang (cross section) kita hanya perlu membuat tiga variabel saja yaitu Penjualan, Biaya Iklan dan Laba, maka pada data pool kita perlu menambahkan satu variabel lagi yaitu nama perusahaan yang berfungsi sebagai acuan pengelompokan yang berfungsi pada analisis pemodelan dengan pool data. Selain itu, perlu ditambahan satu jenis perusahaan lagi (_D) untuk menghasilkan model regresi dengan random effect (karena pada bahasan fixed effect jumlah perusahaan (objek) sama dengan jumlah koefisien). Lebih jelas langkah-langkah untuk menginput pada Eviews adalah sebagai berikut :

1. Siapkan data yang akan kita analisis dalam Microsoft Excel seperti tampak pada data tabel 1.

pool data random effect regresi @mobilestatistik.com
Gambar 1. Data Panel Pada Excel

2. Klik File, New, Workfile…, sehingga di layar akan tampak gambar sebagai berikut. Pada menu ini kita mendefinisikan data penelitian yang akan kita masukan ke dalam Eviews.

pool data random effect regresi @mobilestatistik.com
Gambar 2. Pendefinisian Data Panel Penelitian

3. Setelah kita mendefinisikan data yang kita miliki pada jendela Workfile, setelah kita klik OK maka akan terlihat jendela Eviews seperti tampak pada gambar berikut. Sampai tahapan ini kita belum memiliki data apapun. Akan tetapi pada poin 2 kita sudah mendefinisikan data yang akan kita import kedalam Eviews. Pada jendela Eviews akan terlihat lambang B dan huruf c, yang merupakan konstanta serta resid atau residual, yang didalam statistik sering disebut sebagai residual atau error.

pool data random effect regresi @mobilestatistik.com
Gambar 3. Workfield Data Panel

4. Klik menu Object, New Object, lalu pilih Pool dan namai objek tersebut dengan nama “Iklan”, lalu klik OK. Maka pada layar akan muncul tampilan seperti pada gambar berikut.

pool data random effect regresi @mobilestatistik.com
Gambar 4. Menu Object Pada Eviews
pool data random effect regresi @mobilestatistik.com
Gambar 5. Menu Data Pool Pada Eviews
pool data random effect regresi @mobilestatistik.com
Gambar 6. Tampilan Jendela Data Pool Pada Eviews

5. Kemudian pada jendela “Pool Iklan” tuliskan secara manual nama perusahaan yang sesuai dengan format penulisan pada file excel data yang kita miliki. (perusahaan _A, _B, _C dan _D). Seperti tampak pada gambar berikut.

pool data random effect regresi @mobilestatistik.com
Gambar 7. Pendefinisian Pengelompokan Data Pool Pada Eviews

6. Pada jendela “Pool Iklan” klik menu Proc, Import Pool Data. Pada tahapan ini kita akan mengimport data yang sebelumnya sudah kita miliki pada file Excel. Sehingga ketika kita masukan kedalam Eviews akan terlihat seperti gambar berikut. Tuliskan nama variabel sesuai dengan nama pada file excel di akhiri dengan tanda “ ? ”.

pool data random effect regresi @mobilestatistik.com
Gambar 8. Menu Import Pada Jendela Pool Data Pada Eviews
pool data random effect regresi @mobilestatistik.com
Gambar 9. Import File Data Pool (.xls)
pool data random effect regresi @mobilestatistik.com
Gambar 10. Pendefinisian Variabel Penelitian Pada Eviews

7. Setelah kita berhasil memasukan data yang akan kita proses kedalam Eviews, maka tampilan akhir jendela Workfile yang sudah berisikan data yang sudah siap proses seperti tampak pada gambar berikut.

pool data random effect regresi @mobilestatistik.com
Gambar 11. Jendela Eviews Dengan Variabel Penelitian dan Pool Data

8. Untuk melakukan dan memastikan data yang kita masukan kedalam Eviews sudah benar maka kita bisa membuka data dengan cara mengklik pada icon nama variabel yang kita definisikan pada data pada jendela Workfile atau pada jendela Pool Iklan klik menu Sheet seperti tampak pada gambar berikut. Tuliskan nama variabel sesuai dengan nama pada file excel di akhiri dengan tanda “ ? ”.

pool data random effect regresi @mobilestatistik.com
Gambar 12. Menampilkan Data Penelitian Pool Data Pada Eviews
pool data random effect regresi @mobilestatistik.com
Gambar 13. Data Entry Pada Eviews Pada Jendela Pool Data

9. Untuk mengamankan hasil entry data yang kita miliki kedalam Eviews maka lakukan penyimpanan SAVE, sesuai dengan nama file kerja yang kita kehendaki. Dari tampilan data pada poin 8, kita dapat melakukan Analisis Regresi Random Effect dengan mengklik menu Estimate.

Analisis Regresi Random Effect

Adapun langkah-langkah analisis model regresi Random Effect adalah sebagai berikut.

1. Setelah kita memperoleh data dalam Eviews seperti telah di jelaskan pada tahapan “Input Data Pool” pada poin ke-8, yakni data sudah yakin benar masuk dalam Eviews. Maka langkah selanjutnya adalah klik menu Estimates seperti tampak pada gambar berikut.

pool data random effect regresi @mobilestatistik.com
Gambar 1. Menu Analisis Data Pool

2. Dan selanjutnya pada bingkai Dependent Variabel, isikan “laba?” dan pada bingkau Common Coeficients isikan “penj?” dan “iklan?”. Lalu pada bingkai Estimation Method pada pilihan Cross Section pilih “Random Effect”. Seperti tampak pada gambar berikut.

pool data random effect regresi @mobilestatistik.com
Gambar 2. Mendefinisikan Variabel dan Metode Analisis Data Pool

3. Jika semua isian dalam bingkai menu Pool Estimation sudah benar maka klik OK. Maka Eviews akan memproses analisis regresi Random Effect dan akan muncul jendela output sebagai berikut.

pool data random effect regresi @mobilestatistik.com
Gambar 3.  Output Eviews Model Regresi Random Effect

4. Dari hasil di atas tampak terlihat fungsi dari pool data pada perusahaan A, B, C dan D. Dimana yang membedakan dengan fungsi regresi biasa (Common Effect) adalah terletak pada penambahan koefisien konstanta Random Effect untuk tiap objek perusahaan (_A_C ; _B_C ; _C_C dan _D_C) sebagai nilai penambah pada koefisien utama model C. Dari hasil di atas kita peroleh 4 bentuk persamaan yang merujuk pada pool data berdasarkan perusahaan A, B, C dan D.

Yang perlu diperhatikan oleh peneliti atau data master untuk semua proses yang sudah kita paparkan di atas diantaranya, pertama adalah tata cara menginput data dari format excel ke dalam Eviews dan kedua adalah pemilihan objek yang dijadikan sebagai pool data pada metode yang dipilih dalam analisis. Hal ini perlu diperhatikan agar tidak terjadi error ketika import data (data tidak muncul) dan model yang dihasilkan sesuai teori yang mendasari analisis. Dan yang paling utama bagi para peneliti atau data master adalah tahu tujuan dan dasar teori yang mengharuskannya menggunakan metode regresi dengan Random Effect. SEMANGAT MEMPELAJARI!!!

Sumber :

  • Analisis Ekonometrika dan Statistika dengan Eviews, Wing Wahyu Winarno

—————————————————————————————————————————————————————————

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————————

Model Regresi Fixed Effect Pada Pool Data Eviews

Model Regresi Fixed Effect Pada Pool Data Eviews

Pada artikel sebelumnya kita sudah sedikit mengulas mengenai data panel aplikasinya pada software Eviews. Sedikit mereview kembali pemaparan sebelumnya bahwa terdapat 2 perlakukan pada data panel yakni sebagai pool data dan sebagai data panel itu sendiri. (untuk melihat perbedaan pada aplikasi Eviews, silahkan para peneliti atau data master baca artikel kita tentang “Mengenal Pool Data dan Data Panel Pada Eviews”). Dimana untuk masing-masing pengguanaan datanya terdapat ciri khas dan kekhususan tersendiri.

Pada kesempatan kali ini kita akan coba paparkan satu analisis regresi dengan menggunakan pool data dengan menggunakan metode Fixed Effect (pada artikel sebelumnya bahwa dengan menggunakan pool data setidakanya ada 2 model tambahan yang dapat dibentuk merujuk pada jenis data pool yakni model dengan fixed effect dan model dengan random effect).

Perhatikan kembali kombinasi data cross section dan time series data pada tabel berikut.

pool data regresi fixed effect
Tabel 1. Contoh Bentuk Cross Section dan Time Series (Data Panel)

Seperti kita ketahui bahwa dalam data pool, data pada tabel di atas kita perlakukan dengan cara membaginya berdasarkan perusahaan (data kelompok perusahaan A, B dan C).

Berikut disajikan secara bertahap analisis data panel dengan metode analisis pada pool data dengan menggunakan Eviews.

Input Data Pool

Sebenarnya tidak ada perlakuan khusus dalam menginput data seperti data pada tabel 1. Apabila pada analisis regresi dengan data silang (cross section) kita hanya perlu membuat tiga variabel saja yaitu Penjualan, Biaya Iklan dan Laba, maka pada data pool kita perlu menambahkan satu variabel lagi yaitu nama perusahaan. Lebih jelas langkah-langkah untuk menginput pada Eviews adalah sebagai berikut :

1. Siapkan data yang akan kita analisis dalam Microsoft Excel seperti tampak pada data tabel 1.

pool data regresi fixed effect
Gambar 1. Data Panel Pada Excel

2. Klik File, New, Workfile…, sehingga di layar akan tampak gambar sebagai berikut. Pada menu ini kita mendefinisikan data penelitian yang akan kita masukan ke dalam Eviews.

pool data regresi fixed effect
Gambar 1. Pendefinisian Data Panel Penelitian

3. Setelah kita mendefinisikan data yang kita miliki pada jendela Workfile, setelah kita klik OK maka akan terlihat jendela Eviews seperti tampak pada gambar berikut. Sampai tahapan ini kita belum memiliki data apapun. Akan tetapi pada poin 2 kita sudah mendefinisikan data yang akan kita import kedalam Eviews. Pada jendela Eviews akan terlihat lambang B dan huruf c, yang merupakan konstanta serta resid atau residual, yang didalam statistik sering disebut sebagai residual atau error.

pool data regresi fixed effect

4. Klik menu Object, New Object, lalu pilih Pool dan namai objek tersebut dengan nama “Iklan”, lalu klik OK. Maka pada layar akan muncul tampilan seperti pada gambar berikut.

pool data regresi fixed effect
Gambar 4. Menu Object Pada Eviews
pool data regresi fixed effect
Gambar 5. Menu Data Pool Pada Eviews
pool data regresi fixed effect
Gambar 6. Tampilan Jendela Data Pool Pada Eviews

5. Kemudian pada jendela “Pool Iklan” tuliskan secara manual nama perusahaan yang sesuai dengan format penulisan pada file excel data yang kita miliki. (perusahaan _A, _B dan _C). Seperti tampak pada gambar berikut.

pool data regresi fixed effect
Gambar 7. Pendefinisian Pengelompokan Data Pool Pada Eviews

6. Pada jendela “Pool Iklan” klik menu Proc, Import Pool Data. Pada tahapan ini kita akan mengimport data yang sebelumnya sudah kita miliki pada file Excel. Sehingga ketika kita masukan kedalam Eviews akan terlihat seperti gambar berikut. Tuliskan nama variabel sesuai dengan nama pada file excel di akhiri dengan tanda “ ? ”.

pool data regresi fixed effect
Gambar 8. Menu Import Pada Jendela Pool Data Pada Eviews
pool data regresi fixed effect
Gambar 9. Import File Data Pool (.xls)
pool data regresi fixed effect
Gambar 10. Pendefinisian Variabel Penelitian Pada Eviews

7. Setelah kita berhasil memasukan data yang akan kita proses kedalam Eviews, maka tampilan akhir jendela Workfile yang sudah berisikan data yang sudah siap proses seperti tampak pada gambar berikut.

Gambar 11. Jendela Eviews Dengan Variabel Penelitian dan Pool Data

8. Untuk melakukan dan memastikan data yang kita masukan kedalam Eviews sudah benar maka kita bisa membuka data dengan cara mengklik pada icon nama variabel yang kita definisikan pada data pada jendela Workfile atau pada jendela Pool Iklan klik menu Sheet seperti tampak pada gambar berikut. Tuliskan nama variabel sesuai dengan nama pada file excel di akhiri dengan tanda “ ? ”.

pool data regresi fixed effect
Gambar 12. Menampilkan Data Penelitian Pool Data Pada Eviews
pool data regresi fixed effect

9. Untuk mengamankan hasil entry data yang kita miliki kedalam Eviews maka lakukan penyimpanan SAVE, sesuai dengan nama file kerja yang kita kehendaki. Dari tampilan data pada poin 8, kita dapat melakukan Analisis Regresi Fixed Effect dengan mengklik menu Estimate.

Analisis Regresi Fixed Effect

Sebelum melakukan pemodelan data pool dengan menggunakan fixed effect ada baiknya peneliti atau data master memperhatikan beberapa aspek yang berikut.

  1. Teknik yang paling sederhana mengasumsikan bahwa data gabungan yang ada, menunjukkan kondisi yang sesungguhnya. Hasil analisis regresi dianggap berlaku pada semua objek pada semua waktu. Metode ini sering disebut dengan Common Effect. Kelemahannya adalah memungkinkannya tiap objek saling berbeda, bahkan suatu objek pada suatu waktu akan sangat berbeda dengan kondisi objek tersebut pada waktu yang lain.
  2. Oleh karena itu, diperlukan suatu model yang dapat menunjukkan perbedaan konstanta antarobjek, meskipun dengan koefisien regresor yang sama. Model ini dikenal dengan model regresi Fixed Effect. Efek tetap disini maksudnya adalah bahwa satu objek, memiliki konstanta tetap besarnya untuk berbagai periode waktu. Demikian juga dengan koefisien regresinya tetap besarnya dari waktu ke waktu.

Sebagai catatan tambahan bahwa bentuk persamaan dari regresi Fixed Effect mirip atau hampir serupa dengan model regresi variabel dummy di X, dikarenakan untuk memperoleh konstanta tiap objek ke-i (mis : perusahaan A, B dan C) diberlakukan nilai nol (0) bagi objek yang lain dalam proses perhitungannya. (silahkan baca artikel : Regresi Variabel Dummy)

Adapun langkah-langkah analisis model regresi Fixed Effect adalah sebagai berikut.

1. Setelah kita memperoleh data dalam Eviews seperti telah di jelaskan pada tahapan “Input Data Pool” pada poin ke-8, yakni data sudah yakin benar masuk dalam Eviews. Maka langkah selanjutnya adalah klik menu Estimates seperti tampak pada gambar berikut.

pool data regresi fixed effect
Gambar 1. Menu Analisis Data Pool

2. Dan selanjutnya pada bingkai Dependent Variabel, isikan “laba?” dan pada bingkai Common Coeficients isikan “penj?” dan “iklan?”. Lalu pada bingkai Estimation Method pada pilihan Cross Section pilih “Fixed Effect”. Seperti tampak pada gambar berikut.

pool data regresi fixed effect

3. Jika semua isian dalam bingkai menu Pool Estimation sudah benar maka klik OK. Maka Eviews akan memproses analisis regresi Fixed Effect dan akan muncul jendela output sebagai berikut.

pool data regresi fixed effect
Gambar 3.  Output Eviews Model Regresi Fixed Effect

4. Dari hasil di atas tampak terlihat fungsi dari pool data pada perusahaan A, B dan C. dimana yang membedakan dengan fungsi regresi biasa (Common Effect) adalah terletak pada penambahan koefisien konstantan Fixed Effect untuk tiap objek perusahaan (_A_C ; _B_C dan _C_C) sebagai nilai penambah pada koefisien utama model C. Dari hasil di atas kita peroleh 3 bentuk persamaan yang merujuk pada pool data berdasarkan perusahaan A, B dan C

Yang perlu diperhatikan oleh peneliti atau data master untuk semua proses yang sudah kita paparkan di atas diantaranya, pertama adalah tata cara menginput data dari format excel ke dalam Eviews dan kedua adalah pemilihan objek yang dijadikan sebagai pool data pada metode yang dipilih dalam analisis. Hal ini perlu diperhatikan agar tidak terjadi error ketika import data (data tidak muncul) dan model yang dihasilkan sesuai teori yang mendasari analisis. Dan yang paling utama bagi para peneliti atau data master adalah tahu tujuan dan dasar teori yang mengharuskannya menggunakan metode regresi dengan Fixed Effect. SEMANGAT MEMPELAJARI!!!

Sumber :

  • Analisis Ekonometrika dan Statistika dengan Eviews, Wing Wahyu Winarno

—————————————————————————————————————————————————————————–

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————————–

Mengenal Pool Data dan Data Panel Pada Eviews

Mengenal Pool Data dan Data Panel Pada Eviews

Kesempatan kali ini kita akan coba ulas secara singkat kaitannya dengan pemahaman dan perlakuan data penelitian bertipe mixed yaitu data cross section dan time series data. Seperti kita ketahui sebelumnya bahwa data cross section umum didefinisikan bahwa data yang diambil dalam satu kali waktu sehingga tidak ada unsur eksplisit waktu pada data yang dilibatkan dalam penganalisisan lebih lanjut. Misal umum digunakan data cross section dalam rumpun analisis regresi (sederhana, multipel, dummy dst). Adapun time series data yaitu data penelitian yang merujuk pada suatu runutan waktu sehingga dalam penganalisisan lebih lanjut faktor waktu merupakan salah satu variabel yang berperan dalam proses analisis lanjutan pada data penelitian.

Nah pada uraian kali ini kita coba memahami salah satu tipe data lainnya yang merupakan kombinasi 2 tipe data tadi, cross section dan time series data yang umum dikenal sebagai pool data dan data panel. Berdasarkan pemahaman penulis berdasarkan pada literatur yang dipelajari tipe data pada pool data dan data panel adalah sama, hanya saja perlakukan dalam proses analisis dan tujuan analisis lebih lanjut pada data yang berbeda. Umumnya hal ini diperlukan dan ditemukan jika kita menggunakan software Eviews. Dalam software Eviews dimulai dari proses entry data sampai dengan analisis data, antara pool data dan data panel adalah berbeda.

Secara prinsip gabungan antara data cross section dan data time series akan membentuk data panel dan data pool. Berikut adalah bentuk data yang dapat diberlakukan secara pool data maupun data panel. Untuk membedakannya disajikan hasil entry pada software Eviews untuk masing-masing pool data dan data panel.

pool data, data panel, Eviews
Tabel 1. Contoh Bentuk Cross Section dan Time Series

Pool Data

Data pool, sebenarnya merupakan data panel, kecuali masing-masing kelompok data dipisahkan berdasarkan objeknya (pada data tabel 1, pool data dipisahkan berdasarkan perusahaan A, B dan C). Berikut disajikan hasil entri data pada tabel 1 ke dalam Eviews seperti tampak pada gambar berikut.

pool data, data panel, Eviews
Gambar 1. Contoh Input Bentuk Pooled Data Pada Eviews

Jelas terlihat pada gambar tampilan Eviews di atas, bahwa perlakuan data cross section dan time series pada pool data, pada data dilakukan pengelompokan (salah satunya berdasarkan perusahaan A, B dan C) sehingga dalam proses analisisnya cukup banyak perbedaan jika dibandingkan dengan analisis regresi pada umumnya dan dengan analisis regresi data panel (umumnya dikenal adanya istilah fixed effect dan random effect yang ditimbulkan karena adanya pengelompokan pada data. Misal : kelompok perusahaan A, B dan C). Lebih lanjut kita akan ulas secara lebih jelas mengenai fixed effect dan random effect pada artikel lainnya.

Data Panel

Data panel diperkenalkan oleh Howles pada tahun 1950, merupakan cross section (terdiri atas beberapa variabel) dan sekaligus terdiri atas beberapa waktu. Berikut disajikan hasil entri data pada tabel 1 ke dalam Eviews seperti tampak pada gambar berikut.

pool data, data panel, Eviews
Gambar 2. Contoh Input Bentuk Data Panel Pada Eviews

Jelas terlihat pada gambar tampilan Eviews di atas, bahwa perlakuan data cross section dan time series pada data panel, pada data tidak dilakukan pengelompokan seperti halnya pada pool data sehingga dalam proses analisisnya hampir sama jika dibandingkan dengan analisis regresi pada umumnya. Akan tetapi dalam konsepsi penggunaannya tetap saja memiliki perbedaan dengan konsepsi regresi pada umumnya. Beberapa analisis yang umum dengan menggunakan konsepsi data panel diantaranya adalah analisis regresi data panel, uji kointegrasi dan uji stasioneritas dengan uji akar unit (unit root test). Lebih lanjut kita akan ulas secara lebih jelas mengenai analisis regresi data panel, uji kointegrasi dan uji stasioneritas dengan uji akar unit (unit root test) pada artikel lainnya

Dari bentuk cara entry pada software Eviews, jelaslah bagi kita untuk membedakan perlakuan data cross section dan time series jika kita perlakukan sebagai pool data dan data panel. Untuk masing-masing perlakukan pada data tersebut (pool data dan data panel) terdapat keunikan tersendiri dalam proses analisis data kaitannya dengan pemodelan regresi. Lebih lanjut kita akan uraikan tipe dan jenis analisis yang berlaku dengan kondisi data sebagai pool data dan data panel pada artikel-artikel selanjutnya. SEMANGAT MEMPELAJARI!!!

Sumber :

  • Analisis Ekonometrika dan Statistika dengan Eviews, Wing Wahyu Winarno

———————————————————————————————————————————————————————————

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

———————————————————————————————————————————————————————————

Analisis Korelasi Kanonik Dengan SPSS

Analisis Korelasi Kanonik Dengan SPSS

Pada kesempatan yang lalu kita sudah menjelaskan secara konsepsi apa itu analisis korelasi kanonik dan perbedaannya dengan bentuk korelasi yang pada umumnya kita kenal pada analisis korelasi bivariate. Untuk kembali mengingatkan kita sedikit pada konsepsi analisis korelasi kanonik, barangkali peneliti atau data master baru saja menemukan artikel ini, analisis korelasi kanonik merupakan jenis analisis yang diperuntukan untuk mencari hubungan antara set variabel bebas (X) dengan set variabel dependen (Y). Jadi dalam hal ini analisis korelasi kanonik termasuk dalam rumpun analisis multivariate.

Pada pembahasan kali ini kita akan coba uraikan tahapan dalam memperoleh nilai korelasi kanonik dengan bantuan software SPSS. Perlu diperhatikan oleh para peneliti atau data master untuk terlebih dahulu mengenal dan memahami konsep analisis korelasi kanonik dan prinsip dalam pembentukannya (Baca artikel : Analisis Korelasi Kanonik dan Analisis Komponen Utama). Hal ini sangat berguna dalam proses pembentukan pemahaman pada tahapan analisis dan pembacaan hasil analisis dengan menggunakan software.

Berikut tahapan dalam penggunaan software SPSS dalam analisis korelasi kanonik.

1. Buka file excel yang terdapat data yang akan kita gunakan dalam analisis korelasi kanonik. Pastikan bahwa data yang kita miliki merupakan data series lebih dari satu variabel X dan lebih dari satu varibel Y. Seperti tampak pada gambar berikut.

korelasi kanonik

2. Setelah kita persiapkan data seperti pada poin 1. Maka langkah selanjutnya adalah buka sofware SPSS dan pada Variabel View definisikan variabel yang kita pakai dalam analisis (variabel X dan Y) serta salin data pada excel ke dalam SPSS pada tampilan Data View. Seperti tampak pada gambar berikut.

korelasi kanonik

Gambar 1. Tampilan Data Pada Data View

3. Langkah selanjutnya adalah melakukan analisis korelasi kanonik. Ada 2 cara melakukan analisis korelasi kanonik. Pertama bagi peneliti atau data master yang sudah melakukan install addins analisis korelasi kanonik, maka dapat langsung mencari pada menu Analyse. Kedua, jika peneliti atau data master tidak menemukan pada menu Analyse maka proses analisis kanonik dapat menggunakan menu Syntax, seperti tampak pada gambar berikut.

korelasi kanonik
Gambar 2. Menu Syntax Pada SPSS
korelasi kanonik
Gambar 3. Tampilan Jendela Syntax
korelasi kanonik

Gambar 4. Jendela Syntax Dengan Intruksi Korelasi Kanonik

4. Setelah memastikan semua syntak yang dituliskan, benar, maka langkah selanjutnya klik menu Run dan klik All. Maka akan muncul tampilan output SPSS untuk analisis korelasi kanonik seperti tampak pada beberapa gambar berikut.

korelasi kanonik

Gambar 5. Output Korelasi Kanonik
korelasi kanonik

Gambar 6. Output Korelasi Kanonik
korelasi kanonik

Gambar 7. Output Korelasi Kanonik
korelasi kanonik

Gambar 8. Output Korelasi Kanonik

5. Setelah mendapatkan output seperti tampak pada poin 4, peneliti atau data master dapat menginterpretasikan hasilnya berdasarkan referensi atau litelatur rujukan serta disesuaikan dengan statemen masalah telah ditentukan di awal.

Yang perlu diperhatikan oleh para peneliti atau data master dalam menginterpretasikan hasil dari analisis korelasi kanonik, setidaknya ada 3 (tiga) aspek utama yaitu pertama, pasangan variabel kanonik mana (canonical variate ke-i) yang menghasilkan nilai korelasi yang signifikan, kedua, menentukan variabel-variabel mana yang memiliki kontribusi yang tinggi dalam menghasilkan canonical variate yang berkorelasi tinggi (koefisien canonical variate) dan ketiga, sejauh mana variasi yang terdapat pada variabel Y dapat dijelaskan oleh variabel X pada canonical covariate yang signifikan serta berkorelasi tinggi tersebut. Untuk menambah atau mengawali pemahaman akan hal tersebut para pembaca dapat membaca artikel kita terkait PCA, analisis faktor dan analisis diskriminan secara berurutan sehingga menguatkan pada proses interpretasi hasil analisis yang akan dilakukan. SEMANGAT MENCOBA!!!

Sumber :

  • Subhash Sharma, Applied Multivariate Technique
  • www-01.ibm.com/support

—————————————————————————————————————————————————————————

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————————

Perbandingan SEM dengan SEM PLS

Perbandingan SEM dengan SEM PLS

Kita akan sedikit review kembali pembahasan kita terkait SEM dan SEM PLS, yang banyak sekali didapati kebingungan penggunaannya pada sebagian peneliti atau data master yang masuk melalui beberapa pertanyaan kepada kita. Bahwa peneliti tidak perlu memaksakan data yang dimiliki untuk memilih SEM sebagai final tools untuk menghasilkan model struktural atas data yang dimiliki, sedangkan data tersebut memiliki banyak kelemahan dalam pemenuhan asumsi model SEM. Tidak sedikit akhirnya peneliti atau data master melakukan manipulasi data (terutama pada penelitian sosial-angket) hanya agar diperoleh output model SEM dengan LISREL (salah satunya). Perlu dipahami bahwa ada alternatif lain bagi peneliti atau data master dalam menghasilkan model struktural atas data yang dimiliki ketika asumsi-asumsi model SEM tidak terpenuhi yaitu dengan SEM-PLS, hal ini agar peneliti atau data master tetap dapat menjaga keaslian hasil dari penelitian yang dilakukan.

Lebih dalam terkait dengan SEM dan SEM-PLS kita akan uraikan pada bagian berikut.  

Pengertian PLS

Dalam sebuah penelitian sering kali peneliti dihadapkan pada kondisi di mana ukuran sampel cukup besar, tetapi memiliki landasan teori yang lemah dalam hubungan di antara variable yang dihipotesiskan. Namun tidak jarang pula ditemukan hubungan di antara variable yang sangat kompleks, tetapi ukuran sampel data kecil. Partial Least Square (PLS) adalah salah satu metode alternative Structural Equation Modeling (SEM) yang dapat digunakan untuk mengatasi permasalahan tersebut.

Terdapat dua pendekatan dalam Structural Equation Modeling (SEM), yaitu SEM berbasis covariance (Covariance Based-SEM, CB-SEM) dan SEM dengan pendekatan variance (VB-SEM) dengan teknik Partial Least Squares (PLS-SEM). PLS-PM kini telah menjadi alat analisis yang popular dengan banyaknya jurnal internasional atau penelitian ilmiah yang menggunakan metode ini. Partial Least Square disingkat PLS merupakan jenis analisis SEM yang berbasis komponen dengan sifat konstruk formatif. PLS pertama kali digunakan untuk mengolah data di bidang economertrics sebagai alternative teknik SEM dengan dasar teori yang lemah. PLS hanya berfungsi sebagai alat analisis prediktor, bukan uji model.

Semula PLS lebih banyak digunakan untuk studi bidang analytical, physical dan clinical chemistry. Disain PLS dimaksudkan untuk mengatasi keterbatasan analisis regresi dengan teknik OLS (Ordinary Least Square) ketika karakteristik datanya mengalami masalah, seperti : (1). ukuran data kecil, (2). adanya missing value, (3). bentuk sebaran data tidak normal, dan (4). adanya gejala multikolinearitas. OLS regression biasanya menghasilkan data yang tidak stabil apabila jumlah data yang terkumpul (sampel) sedikit, atau adanya missing values maupun multikolinearitas antar prediktor karena kondisi seperti ini dapat meningkatkan standard error dari koefisien yang diukur (Field, 2000 dalam Mustafa dan Wijaya, 2012:11).

PLS yang pada awalnya diberi nama NIPALS (Non-linear Iterative Partial Least Squares) juga dapat disebut sebagai teknik prediction-oriented. Pendekatan PLS secara khusus berguna juga untuk memprediksi variable dependen dengan melibatkan sejumlah besar variable independen. PLS selain digunakan untuk keperluan confirmatory factor analysis (CFA), tetapi dapat juga digunakan untuk exploratory factor analysis (EFA) ketika dasar teori konstruk atau model masih lemah. Pendekatan PLS bersifat asymptotic distribution free (ADF), artinya data yang dianalisis tidak memiliki pola distribusi tertentu, dapat berupa nominal, kategori, ordinal, interval dan rasio.

Pendekatan PLS lebih cocok digunakan untuk analisis yang bersifat prediktif dengan dasar teori yang lemah dan data tidak memenuhi asumsi SEM yang berbasis kovarian. Dengan teknik PLS, diasumsikan bahwa semua ukuran variance berguna untuk dijelaskan. Karena pendekatan mengestimasi variable laten diangap kombinasi linear dari indikator, masalah indereminacy dapat dihindarkan dan memberikan definisi yang pasti dari komponen skor. Teknik PLS menggunakan iterasi algoritma yang terdiri dari serial PLS yang dianggap sebagai model alternative dari Covariance Based SEM (CB-SEM). Pada CB-SEM metode yang dipakai adalah Maximum Likelihood (ML) berorientasi pada teori dan menekankan transisi dari analisis exploratory ke confirmatory. PLS dimaksudkan untuk causal-predictive analysis dalam kondisi kompleksitas tinggi dan didukung teori yang lemah.

Seperti penjelasan di muka, metode PLS juga disebut teknik prediction-oriented. Pendekatan PLS secara khusus berguna untuk meprediksi variable dependen dengan melibatkan banyak variable independen. CB-SEM hanya mampu memprediksi model dengan kompleksitas rendah sampai menengah dengan sedikit indikator.

VB-SEM (PLS-SEM ) vs. CB-SEM (AMOS dan LISREL)

Analisis SEM secara umum dapat dibedakan menjadi Variance Based SEM (VB SEM) dan Covariace Based SEM (CBSEM). Pendekatan PLS-SEM didasarkan pada pergeseran analisis dari pengukuran estimasi parameter model menjadi pengukuran prediksi model yang relevan. PLS-SEM menggunakan algoritma iteratif yang terdiri atas beberapa analisis dengan metode kuadrat terkecil biasa (Ordinary Least Squares). Oleh karena itu, dalam PLS-SEM persoalan identifikasi tidak penting. PLS-SEM justru mampu menangani masalah yang biasanya muncul dalam analisis SEM berbasis kovarian. Pertama, solusi model yang tidak dapat diterima (inadmissible solution) seperti munculnya nilai standardized loading factor > 1 atau varian bernilai 0 atau negatif. Kedua, faktor indeterminacy yaitu faktor yang tidak dapat ditentukan seperti nilai amatan untuk variable laten tidak dapat diproses. Karena PLS memiliki karakteristik algoritma interatif yang khas, maka PLS dapat diterapkan dalam model pengukuran reflektif maupun formatif. Sedangkan analisis CB-SEM hanya menganalisis model pengukuran reflektif (Yamin dan Kurniawan, 2011:15).

Dengan demikian, PLS-SEM dapat dikatakan sebagai komplementari atau pelengkap CB SEM (AMOS dan LISREL) bukannya sebagai pesaing. Terdapat 10 kriteria perbandingan sederhana antara penggunaan VBSEM (PLS–SEM) dengan CBSEM (AMOS dan LISREL) dapat dilihat pada Table 1.1.

SEM-PLS, SmartPLS

Dengan berbekal informasi di atas, diharapakan dapat memperjelas bagi peneliti atau data master dalam menerapkan data pada model struktural yang hendak di bentuknya, SEM atau SEM-PLS. Diharapkan juga bahwa peneliti atau data master tidak memaksakan model SEM pada data sedangkan pemenuhan asumsi pada pemodelan SEM sangat lah kurang (banyak kasus dengan memanipulasi data – terutama pada penelitian sosial). Dari informasi di atas jelaslah bahwa dengan penggunaan SEM-PLS sangat tepat untuk peneliti atau data master yang memiliki data yang memiliki banyak kekurangan dalam pemenuhan asumsi model SEM. Hal ini guna memperoleh hasil maksimal dari pemodelan SEM yang dilakukan dan secara prinsip SEM-PLS merupakan alat yang sama dalam pencarian jawaban atas pemodelan struktural suatu teori atas data yang dimiliki. SEMANGAT MEMAHAMI!!!

Sumber : Petunjuk Praktikum Smart-PLS

—————————————————————————————————————————————————————————

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————————

Goodness of Fit Model SEM PLS

Goodness of Fit Model SEM PLS

Banyak pertanyaan yang masuk kepada kita terkait dengan uji kebaikan model dari model SEM PLS dan output yang dihasilkan oleh software SmartPLS. Pada prinsipnya secara umum ada kesamaan ketika mengevaluasi model SEM antara SEM-PLS dengan SEM. Secara kasat mata peneliti atau data master dapat melihat langsung nilai loading faktor dan nilai statistik t yang muncul langsung pada diagram model untuk menentukan apakah terdapat pengaruh variabel manifest terhadap latenya serta variabel endogen terhadap eksogen berarti ataukah tidak (signifikansi).

Karena memang basis pengolahannya yang berbeda (Baca Artikel : SmartPLS) dimana SEM menggunakan matriks kovarians atau korelasi sebagai basis pengolahannya sedangkan SEM PLS menggunakan matriks varians sebagai basis pengolahannya sehingga memungkinkan menghasilkan evaluasi yang berbeda terhadap output hasilnya. Selain itu, pada SEM PLS dapat digunakan jumlah sampel yang kecil dibandingkan pada SEM, sehingga SEM PLS sering disebut juga non parametrik pada analisis struktural dan SEM merupakan parametrik pada analisis struktural sehingga memungkinkan menghasilkan evaluasi yang berbeda terhadap output hasilnya pula.

Yang sedikit mencolok yang membedakan pengujian kebaikan model antara SEM dengan SEM PLS adalah terletak dari jumlah pengujian. Dimana pengujian pada SEM PLS lebih sedikit dibandingkan dengan pengujian pada SEM. (Baca Artikel : Uji Kebaikan Model SEM).

Pada kesempatan kali ini kita akan coba uraikan secara singkat penujian kebaikan model SEM PLS berdasarkan teori dan output yang dihasilkan oleh software SmartPLS, sebagai berikut.

Model hubungan variable laten dalam SEM PLS terdiri dari tiga jenis ukuran, yaitu : (1). Inner model yang menspesifikasikan hubungan antar variable laten berdasarkan substantive theory, (2). Outer model yang menspesifikasi hubungan antar variable laten dengan indikator atau variable manifest-ntya (disebut measurement model). Outer model sering disebut outer relation yang mendefinisikan bagaimana setiap blok indicator berhubungan dengan variable laten yang dibentuknya. (3). Weight relation, yaitu estimasi nilai dari variable latent.

Smart PLS, SEM-PLS

Evaluasi Outer Model (Model Pengukuran)

1. Model Pengukuran Reflektif

>Convergent Validity : convergent validity mengukur besarnya korelasi antar konstruk dengan variable laten.

  • Individual Item Reliability : pemeriksaan individual item reliability, dapat dilihat dari nilai standardized loading factor. Standardized loading factor menggambarkan besarnya korelasi antara setiap item pengukuran (indikator) dengan konstruknya. Nilai loading factor > 0.7 dikatakan ideal, artinya indicator tersebut dikatakan valid mengukur konstruknya. Dalam pengalaman empiris penelitian, nilai loading factor > 0.5 masih dapat diterima. Dengan demikian, nilai loading factor < 0.5 harus dikeluarkan dari model (di-drop). Nilai kuadrat dari nilai loading factor disebut communalities. Nilai ini menunjukkan persentasi konstruk mampu menerangkan variasi yang ada dalam indikator.
  • Internal Consistency atau Construct Reliability : kita melihat internal consistency reliability dari nilai Cronbach’s Alpha dan Composite Reliability (CR). Composite Reliability (CR) lebih baik dalam mengukur internal consistency dibandingkan Cronbach’s Alpha dalam SEM karena CR tidak mengasumsikan kesamaan bobot dari setiap indikator. Cronbach’s Alpha cenderung menaksir lebih rendah construct reliability dibandingkan Composite Reliability (CR). Interpretasi Composite Reliability (CR) sama dengan Cronbach’s Alpha. Nilai batas > 0.7 dapat diterima, dan nilai > 0.8 sangat memuaskan.
  • Average Variance Extracted (AVE) : Ukuran lainnya dari covergent validity adalah nilai Average Variance Extracted (AVE). Nilai AVE menggambarkan besarnya varian atau keragaman variable manifest yang dapat dimiliki oleh konstruk laten. Dengan demikian, semakin besar varian atau keragaman variable manifest yang dapat dikandung oleh konstruk laten, maka semakin besar representasi variable manifest terhadap konstruk latennya. Fornell dan Larcker (1981) dalam Ghozali (2014:45) dan Yamin dan Kurniawan (2011:18) merokemndasikan penggunaan AVE untuk suatu criteria dalam menilai convergent validity. Nilai AVE minimal 0.5 menunjukkan ukuran convergent validity yang baik. Artinya, variable laten dapat menjelaskan rata-rata lebih dari setengah varian dari indikator-indikatornya. Nilai AVE diperoleh dari penjumlahan kuadrat loading factor dibagi dengan error. Ukuran AVE juga dapat digunakan untuk mengukur reliabilitas component score variable latent dan hasilnya lebih konservatif dibandingkan dengan composite reliability (CR). Jika semua indicator distandarkan, maka nilai AVE akan sama dengan rata-rata nilai block communalities.

> Discriminant Validity : discriminant validity dari model reflektif dievaluasi melalui cross loading, kemudian dibandingkan nilai AVE dengan kuadrat dari nilai korelasi antar konstruk (atau membandingkan akar kuadrat AVE dengan korelasi antar konstruknya). Ukuran cross loading adalah membandingkan korelasi indikator dengan konstruknya dan konstruk dari blok lainnya. Bila korelasi antara indicator dengan konstruknya lebih tinggi dari korelasi dengan konstruk blok lainnya, hal ini menunjukkan konstruk tersebut memprediksi ukuran pada blok mereka dengan lebih baik dari blok lainnya. Ukuran discriminant validity lainnya adalah bahwa nilai akar AVE harus lebih tinggi daripada korelasi antara konstruk dengan konstruk lainnya atau nilai AVE lebih tinggi dari kuadrat korelasi antara konstruk.

2. Evaluasi Model Pengukuran Formatif

Sedikitnya ada lima isu kritis untuk menentukan kualitas model formatif, yaitu :

  • Content specification, berhubungan dengan cakupan konstruk laten yang akan diukur. Artinya kalau mau meneliti, peneliti harus seringkali mendiskusikan dan menjamin dengan benar spesifikasi isi dari konstruk tersebut.
  • Specification indicator, harus jelas mengidentifikasi dan mendefinisikan indikator tersebut. Pendefinisian indicator harus melalui literature yang jelas serta telah mendiskusikan dengan para ahli dan divalidasi dengan beberapa pre-test.
  • Reliability indicator, berhubngan dengan skala kepentingan indicator yang membentuk konstruk. Dua rekomendasi untuk menilai reliability indicator adalah melihat tanda indikatornya sesuai dengan hipotesis dan weight indicator-nya minimal 0.2 atau signifikan.
  • Collinearity indicator, menyatakan antara indikator yang dibentuk tidak saling berhubungan (sangat tinggi) atau tidak terdapat masalah multikolinearitas dapat diukur dengan Variance Inflated Factor (VIF). Nilai VIF > 10 terindikasi ada masalah dengan multikolinearitas, dan
  • External validity, menjamin bahwa semua indikator yang dibentuk dimasukkan ke dalam model.

Evaluasi Inner Model (Model Struktural)

Setelah mengevaluasi model pengukuran konstruk/variabel, tahap selanjutnya adalah menevaluasi model struktural atau inner model.

  • Langkah pertama adalah mengevaluasi model struktural adalah melihat signifikansi hubungan antar konstruk/variabel. Hal ini dapat dilihat dari koeisien jalur (path coeficient) yang menggambarkan kekuatan kekuatan hubungan antar konstruk. Tanda atau arah dalam jalur (path coefficient) harus sesuai dengan teori yang dihipotesiskan, signifikansinya dapat dilihat pada t test atau CR (critical ratio) yang diperoleh dari proses bootstrapping (resampling method).
  • Langkah kedua adalah mengevaluasi nilai R2. Interpretasi nilai R2 sama dengan interpretasi R2 regresi linear, yaitu besarnya variability variabel endogen yang mampu dijelaskan oleh variabel eksogen. Menurut Chin (1998) dalam Yamin dan Kurniawan (2011:21) kriteria R2 terdiri dari tiga klasifikasi, yaitu : nilai R2 0.67, 0.33 dan 0.19 sebagai substansial, sedang (moderate) dan lemah (weak). Perubahan nilai R2 dapat digunakan untuk melihat apakah pengaruh variabel laten eksogen terhadap variabel laten endogen memiliki pengaruh yang substantif. Hal ini dapat diukur dengan effect size f2. Menurut Cohen (1988) dalam Yamin dan Kurniawan (2011:21) Effect Size f2 yang disarankan adalah 0.02, 0.15 dan 0.35 dengan variabel laten eksogen memiliki pengaruh kecil, moderat dan besar pada level struktural
  • Untuk memvalidasi model struktural secara keseluruhan digunakan Goodness of Fit (GoF). GoF indeks merupakan ukuran tunggal untuk memvalidasi performa gabungan antara model pengukuran dan model struktural. Nilai GoF ini diperoleh dari akar kuadrat dari  average communalities index dikalikan dengan nilai rata-rata R2 model. Nilai GoF terbentang antara 0 sd 1 dengan interpretasi nilai-nilai : 0.1 (Gof kecil), 0,25 (GoF moderate), dan 0.36 (GoF besar).
  • Pengujian lain dalam pengukuran struktural adalah Q2 predictive relevance yang berfungsi untuk memvalidasi model. Pengukuran ini cocok jika variabel latin endogen memiliki model pengukuran reflektif. Hasil Q2 predictive relevance dikatakan baik jika nilainya > yang menunjukkan variabel laten eksogen baik (sesuai) sebagai variabel penjelas yang mampu memprediksi variabel endogennya.

Seperti analisis menggunakan CB-SEM, analisis dengan PLS-SEM juga menggunakan dua tahapan penting, yaitu measurement model dan structural model. Data dalam measurement model dievaluasi untuk menentukan validitas dan reliabilitasnya. Bagian dari measurement model terdiri dari : (1). Individual loading dari setiap item pertanyaan. (2). Internal Composite Reliability (ICR). (3). Average Variance Extracted (AVE), dan (4). Discriminant Validity.

Apabila data memenuhi syarat dalam measurement model, maka tahap selanjutnya adalah mengevaluasi structural model. Dalam structural model hipotesis diuji melalui signifikansi dari : (1). Path coefficient, (2). T-statistic, dan (3). r-squared value.  SEMANGAT MEMAHAMI!!!

Sumber : Petunjuk Praktikum Smart-PLS

——————————————————————————————————————————————————————————-

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

——————————————————————————————————————————————————————————-

Mengenal Odds dan Odds Rasio

Mengenal Odds dan Odds Rasio

Mungkin banyak yang bertanya-tanya ketika kita sedang coba mempelajari dan memahami analisis regresi rumpun regresi dengan variabel dependen (Y) berupa kategori. Karena istilah tersebut sering sekali muncul dan merupakan salah satu nilai yang penting dalam interpretasi hasil analisis dari analisis regresi dalam rumpun analisis regresi logistik.

Selain itu, bagi para peneliti terutama dalam penelitian medis pun istilah odds atau odds rasio seringkali muncul karena berkaitan dengan pola perbandingan (efektivitas) dan ditemukan dalam penyelesaian kasus dengan menggunakan pendekatan tabel tabulasi silang (cross tabulasi).

Ada baiknya sebelum kita mempelajari lebih lanjut terkait alat analisis yang ada kaitannya dengan nilai odds dan odds rasio, kita coba untuk memahami pengertian dan pemaknaan dari nilai odds dan odds rasio tersebut. Pada kesempatan kali ini kita akan coba ulas dan pelajari bersama kedua nilai dan istilah tersebut.

Odds

Probabilitas (peluang) adalah pernyataan kuantitatif mengenai kemungkinan suatu kejadian akan terjadi. Ukuran probabilitas dikaitkan dengan suatu kejadian Y dan dinyatakan sebagai P(Y) yang bernilai 0 ≤ P(Y) ≤ 1. Odds suatu kejadian Y, dinyatakan sebagai O(Y), adalah rasio probabilitas antara 2 outcome suatu variabel biner, yaitu rasio antara probabilitas terjadinya suatu kejadian Y dengan probabilitas tidak terjadinya kejadian Y tersebut:

odds

Jika peristiwa terjadinya suatu kejadian Y dinyatakan dengan nilai Y = 1 dan peristiwa tidak terjadinya kejadian Y dengan nilai Y = 0, maka odds kejadian Y adalah:

odds

dan odds tidak terjadinya kejadian Y adalah:

odds

Odds Rasio

Pada studi epidemiologi dengan prediktor biner sebagai variabel independen dan respons yang juga biner sebagai variabel dependen, ringkasan data dapat disajikan dalam bentuk tabel 2×2 berikut:

odds
Tabel 1. Tabulasi Silang 2 x 2

Odds bersyarat Y, yaitu odds Y dengan syarat prediktor X ada ialah:

odds

Sedangkan odds Y dengan syarat prediktor X tidak ada yaitu:

odds

Rasio antara keduanya dinamakan rasio odds (odds ratio), sebagai estimasi untuk nilai rasio odds dalam populasi, yaitu:

Sedangkan, untuk prediktor kontinu, rasio odds dihitung sebagai rasio odds untuk dua keadaan dengan perubahan 1 satuan satuan variabel independen, dengan asumsi rasio ini konstan di sepanjang perubahan nilai variabel independen, yang ringkasan datanya disajikan pada tabel berikut:

odds

Rasio odds untuk prediktor kontinu adalah:

odds

Sebagai gambaran redaksi interpretasi nilai odds rasio yang diperoleh dari hasil perhitungan adalah sebagai berikut : “Odds rasio disini dihitung dengan membandingkan pola makan baik dengan pola makan buruk. Odds rasio untuk hasil diabetes dihitung dengan membandingkan peluang memiliki pola makan baik yang diabetes dengan memiliki pola makan buruk yang diabetes. Odds rasio berdasarkan output SPSS dapat yaitu 0.434. Artinya pola makan baik memiliki resiko untuk diabetes 0.434 kali dibandingkan dengan memiliki pola makan buruk. Hal ini mengindikasikan bahwa dengan pola makan baik akan mengurangi resiko untuk terkena diabetes”

Seperti yang telah kita ketahui bersama bahwa penggunaan odds dan odds rasio sangat berguna dalam membantu menginterpretasikan hasil dari beberapa alat analisis statistik. Beberapa diantaranya adalah penggunaannya pada analisis tabulasi silang dan analisis regresi logistik. Dimana odds dan odds rasio bermanfaat dalam menginterpretasikan besaran nilai peluang suatu kejadian atas kejadian yang lain. Sehingga membantu peneliti atau data master dalam memahami suatu kesimpulan dari analisis data yang telah dilakukan. SEMANGAT MEMAHAMI!!!

Sumber Buku : Johan Harlan, Univ. Gunadarma.

——————————————————————————————————————————————————————————

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

——————————————————————————————————————————————————————————

Analisis Regresi Ordinal Dengan SPSS

Analisis Regresi Ordinal Dengan SPSS

Pada kesempatan sebelumnya kita sudah mengupas secara konsepsi analisis regresi ordinal atau analisis regresi dengan data variabel dependen (Y) merupakan kategori berjenjang (level atau tingkatan) lebih dari 2 kategori. Sedikit mereview pembahasan artikel kita tentang analisis regresi ordinal bahwa model yang dihasilkan nantinya akan ada sebanyak k-1 buah persamaan regresi logistik (regesi logistik biner). Sehingga untuk memahami persamaan regresi ordinal yang nantinya dihasilkan, para peneliti atau data master diharapkan memahami pula konsepsi dari analisis regresi logistik (data binner).

Hal lain yang perlu diperhatikan pula oleh para peneliti atau data master adalah adanya variabel kategori lainnya dalam model regresi yang dibentuk. Utamanya adalah variabel kategori (dummy) pada variabel independen (X) sehingga berlaku pula aturan pemodelan dengan melibatkan variabel X dummy (baca artikel : regresi variabel X dummy). Kenapa kita ulas demikian karena dalam penggunaannya, tidak jarang variabel-variabel independen dummy ikut dilibatkan dalam pemodelan dan pada aplikasi SPSS juga difasilitasi bentuk variabel independen kategori (dummy) dalam proses pemodelannya. 

Agar lebih tergambar dan lebih jelas lagi dalam pengaplikasiannya, pada bagian berikut kita akan coba uraikan tahapan-tahapan penggunaan SPSS dalam menghasilkan model regresi ordinal.

1. Persiapkan data yang kita miliki dalam file excel seperti tampak pada gambar berikut. Pastikan variabel yang kita miliki merupakan variabel kategori untuk variabel Y-nya (lebih dari 2 kategori berjenjang), sesuai dengan judul yang kita akan ujikan pada kesempatan kali ini.

regresi ordinal @mobilestatistik.com

2. Buka software SPSS lalu definisikan variabel penelitian kita pada jendela Variabel View, setelahnya masukan data ke dalam software SPSS melalui jendela Data View. Dalam tampilan SPSS akan terlihat seperti gambar berikut :

regresi ordinal @mobilestatistik.com

Gambar 1. Data View
regresi ordinal @mobilestatistik.com

Gambar 2. Variabel View

3. Pilih menu Analyze lalu klik Regression lalu pilih Ordinal lalu klik, maka akan muncul jendela SPSS seperti gambar di bawah ini, yang berisikan menu-menu kelengkapan analisis regresi dengan model ordinal. Masukan variabel-variabel pada sisi sebelah kanan ke dalam kolom pendefinisian variabel yaitu dependent (untuk variabbel Y dummy berjenjang), factors (untuk variabel X dummy) dan covariate (untuk variabel X dengan skala ukur interval/rasio) guna menghasilkan model regresi ordinal yang kita inginkan

regresi ordinal @mobilestatistik.com

4. Klik menu Option untuk mendefinisikan proses yang akan dilakukan oleh SPSS terhadap data dalam proses pemodelan regresi ordinal. Perlu diperhatikan perubahan pada menu option dilakukan harus disesuaikan dengan pemahaman peneliti terhadap teori yang mendasarinya, jika tidak peneliti dapat menggunakan settingan default pada SPSS. Setelah kita definisikan lalu klik Continue.

5. Klik menu Output, pada menu ini didefinisikan seluruh output yang diharapkan dari proses pemodelan regresi ordinal. Sama halnya dengan pada menu Option, perubahan pada menu output dapat dilakukan disesuaikan dengan pemahaman peneliti terhadap teori dan tujuan penggunaan model regresi ordinal yang mendasarinya, jika tidak peneliti dapat menggunakan settingan default pada SPSS. Lalu klik Continue.

regresi ordinal @mobilestatistik.com

6. Dan pada dua menu lainnya yaitu Location dan Scale digunakan dengan berdasarkan pemahaman peneliti terhadap teori yang mendasarinya, jika tidak peneliti dapat menggunakan settingan default pada SPSS.

7. Maka tampilan akhir jendela pemodelan regresi ordinal akan tampak seperti gambar berikut. Jika sudah yakin dengan semua kelengkapan analisis yang akan di terapkan pada data, lalu klik OK.

regresi ordinal @mobilestatistik.com

8. Maka SPSS akan memproses pembentukan model regresi ordinal dan akan muncul tampilan output SPSS seperti gambar di bawah ini.

regresi ordinal @mobilestatistik.com

Gambar 1. Output SPSS Goodness of Fit Model
regresi ordinal @mobilestatistik.com

Gambar 2. Koefisien Regresi Ordinal

9. Selain itu dengan melihat pada SPSS Data Editor, kita dapat melihat nilai peluang dan kategori hasil prediksi yang dihasilkan dari model regresi ordinal yang dihasilkan. Seperti tampak pada gambar di bawah ini.

regresi ordinal @mobilestatistik.com

Dari tahapan pengujian data atas model regresi ordinal yang perlu dicermati oleh peneliti adalah hasil peluang kategori hasil prediksi yang dihasilkan oleh model. Peluang yang dihasilkan seperti telah dijelaskan pada artikel sebelumnya adalah untuk kepentingan pengelompokan salah satunya. Dan lainnya untuk diinterpretasikan secara langsung penggolongan unit data atas suatu kelompok yang diujikan (merujuk pada pengelompokan pada variabel Y). Pengelompokan yang dihasilkan salah satunya berguna dalam menghasilkan nilai rasio kemungkinan atau odds yang dapat sangat membantu peneliti dalam interpretasi perbandingan antar kategori (sama halnya dengan analisis regresi logit binner).

Sampai jumpa pada pembahasan artikel selanjutnya. SELAMAT MENCOBA!!!

——————————————————————————————————————————————————————————

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

——————————————————————————————————————————————————————————

Uji Kebaikan Model Regresi Logistik

Uji Kebaikan Model Regresi Logistik

Ada beberapa kriteria kebaikan model yang harus terpenuhi oleh model persamaan yang dihasilkan oleh rumpun analisis regresi logistik (biner, multinomial dan atau ordinal). Pada prinsipnya pemahaman dasar dapat diperoleh dari analisis regresi karena secara umum adalah sama yaitu menguji secara umum model persamaan regresi dan uji keberartian variabel secara parsial.

Beberapa teknik pengujian pada rumpun analisis regresi logistik (biner, multinomial dan atau ordinal) diantaranya uji rasio likelihood, uji wald, deviansi, uji hosmer-lemeshow dan kriteria informasi. Secara definisi dan pemahaman dalam penggunaannya kita akan coba uraikan secara singkat satu per satu pada uraian berikut.

  1. Uji Rasio Likelihood

Misalkan dimiliki 2 model regresi logistik untuk dataset yang sama dengan model regresi kedua tersarang dalam model pertama. Maka model pertama dinamakan model lengkap (full model-model dengan semua parameter), sedangkan model kedua dinamakan model tereduksi (reduced model-model hanya konstanta atau sebagian parameter).

Uji statistik untuk memperbandingkan kedua model tersebut dapat dilakukan dengan uji rasio likelihood. Jika model pertama memiliki fungsi likehood −2 ln L1 dengan (p + k) parameter dan model kedua memiliki fungsi likehood −2 ln L2 dengan p parameter, maka statistik pengujinya adalah:

regresi ordinal Likelihood ratio

Dimana persamaan di atas berdistribusi khi-kuadrat dengan derajat bebas (p + k) – p = k. Seandainya hasil uji statistik tidak menunjukkan perbedaan antara model lengkap dengan model tereduksi, maka berdasarkan prinsip parsimoni yang dipilih adalah model tereduksi.

  • Uji Wald

Dengan uji rasio likelihood dapat diuji kemaknaan 1 ataupun beberapa prediktor (variabel bebas) sekaligus. Jika uji melibatkan dua atau lebih prediktor dan diperoleh hasil bermakna, tidak diketahui prediktor mana saja yang menyebabkan kemaknaan tersebut. Uji Wald menguji kemaknaan tiap prediktor satu demi satu, masing-masing terhadap hipotesis H0 : bj = 0.

Sebagian ahli Statistika menganggapnya sebagai pengujian ganda (multiple testings) yang memerlukan koreksi untuk kesalahan tipe I-nya, misalnya dengan metode Bonferroni.

Statistik penguji untuk uji Wald adalah:

regresi ordinal statistik Wald

Dimana persamaan di atas berdistribusi normal baku. Jika hendak digunakan koreksi Bonferroni, maka seandainya terdapat (p + 1) parameter dalam model (b0 ,b1, . . . ,bp ) dan akan digunakan tingkat signifikansi, maka batas kemaknaan yang seharusnya digunakan adalah:

alfa bonferroni
  • Deviansi

Deviansi (deviance) merupakan ukuran kebaikan-suai (goodness of fit; GOF) yang lazim digunakan untuk model regresi logistik. Deviansi adalah rasio antara fungsi likelihood model peneliti dengan fungsi likelihood model jenuh:

regresi ordinal deviance

Lc : Likelihood model peneliti, yaitu model yang menggunakan estimasi koefisien regresi b dan akan dihitung deviansinya. Lmax : Likelihood model jenuh

Model jenuh (saturated model) adalah model yang jumlah parameternya sama dengan ukuran sampel. Model jenuh akan menghasilkan prediksi nilai-nilai respons yang sempurna:

regresi ordinal deviance

Deviansi memiliki rentang nilai yang berkisar dari nol sampai dengan positif tak berhingga. Jika model peneliti memiliki (p + 1) parameter, maka deviansinya dianggap berdistribusi khi-kuadrat dengan derajat bebas {(n – (p + 1)} = (n – p – 1). Uji hipotesis kebaikan-suai dengan statistik deviansi menguji hipotesis H0 : Model sesuai data vs H1 : Model tak-sesuai data.

Dalam kenyataannya, uji hipotesis kebaikan-suai dengan statistik deviansi ini dapat menggunakan individu anggota sampel ataupun kelompok pola kovariat sebagai unit analisis. Kelompok pola kovariat (covariate pattern group) adalah kelompok yang beranggotakan subjek yang memiliki himpunan nilai prediktor yang sama. Penggunaan unit analisis yang berbeda ini akan menghasilkan nilai statistik penguji yang berbeda (rumus perhitungannya memang berbeda) dengan derajat bebas yang berbeda pula.

Pada uji hipotesis yang menggunakan kelompok pola kovariat sebagai unit analisis, maka jika jumlah kelompok pola kovariat sama dengan k, statistik penguji dianggap berdistribusi khi-kuadrat dengan derajat bebas {k – (p + 1)} = (k – p – 1).

Statistik deviansi juga dapat digunakan pada uji rasio likelihood yang memperbandingkan dua model hirarkis, yaitu model pertama tersarang dalam model kedua. Jika model pertama memiliki statistik deviansi Dev1 (b) dengan jumlah parameter (p1 +1) dan model kedua memiliki statistik deviansi Dev2 (b) dengan jumlah parameter (p2 +1), maka statistik penguji rasio likelihood-nya adalah:

regresi ordinal deviance

Dimana persamaan di atas yang berdistribusi khi-kuadrat dengan derajat bebas (p­1 + p2).

  • Uji Hosmer-Lemeshow

Sebagian ahli menganggap uji kebaikan-suai 1 model dengan statistik deviansi kurang valid karena pada uji untuk 1 model statistik deviansi kurang mendekati distribusi khi-kuadrat. Perbaikannya adalah dengan uji Hosmer-Lemeshow, yang juga merupakan uji khi-kuadrat tetapi bukan terhadap kelompok-kelompok pola kovariat, melainkan kelompok kuantil. Kuantil yang lazim digunakan adalah desil, dengan membagi sampel menjadi 10 desil.

  • Kriteria Informasi

Kriteria informasi (informational criteria) adalah statistik untuk model yang estimasi parameternya diperoleh dengan memaksimumkan fungsi likelihood-nya, digunakan untuk memperbandingkan kebaikan-suai 2 model hirarkis (salah satu model tersarang dalam model lainnya) ataupun 2 model non-hirarkis. Dua kriteria informasi yang dibahas di sini yaitu AIC (Akaike’s Informational Criteria) dan BIC (Bayesian Informational Criteria).

Pada perbandingan 2 model dengan statistik AIC dan BIC tidak dikenal distribusi statistik penguji, sehingga nilai p-nya tak dapat dihitung. Model yang dipilih adalah model dengan nilai AIC dan BIC yang lebih kecil. Kriteria penilaian selisih relatif nilai AIC antara 2 model A dan B dengan asumsi AICA < AICB menurut Hilbe (2009) adalah:

regresi ordinal kriteria AIC

Tabel 1. Kriteria Penggunaan Nilai AIC

Kriteria penilaian selisih absolut nilai BIC antara 2 model A dan B dengan asumsi BICA < BICB menurut Raftery (1986) adalah:

regresi ordinal kriteria BIC
Tabel 2. Kriteria Penggunaan Nilai BIC

Untuk memperluas dan memperdalam pemahaman terhadap uji kebaikan dari rumpun model regresi logistik, lebih lanjut para peneliti atau data master bisa mempelajari melalui literatur yang lebih lengkap dan mengaplikasikan data riil pada software statistik rujukan (mis : SPSS) untuk mendapatkan gambaran riil angka pengujian yang diperoleh terhadap rumpun model regresi logistik yang dihasilkan dari data. SEMANGAT MEMPELAJARI!!!

Sumber Buku : Johan Harlan, Univ. Gunadarma.

——————————————————————————————————————————————————————————

  1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :
  1. Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.
  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

——————————————————————————————————————————————————————————

Regresi Variabel Tak Bebas Ordinal

Regresi Variabel Tak Bebas Ordinal

Pembahasan terkait dengan ragam analisis regresi kita akan lanjutkan, dimana sebelumnya kita sudah membahas beberapa analisis regresi yang umum orang ketahui dan dalam penggunaannya cukup sering digunakan, beberapa diantaranya adalah analisis regresi logit (data biner), regresi spasial, regresi komponen utama dan yang terakhir kita bahas yaitu regresi multivariate. Yang coba kita akan uraikan secara singkat pada kesempatan kali ini yaitu mengenai analisis regresi ordinal.

Pada pembahasan yang terdahulu kita mengenal istilah ordinal yang merupakan salah satu jenis dari skala ukur data (Baca artikel : Skala Ukur Data). Dalam bahasan skala ukur data, skala ukur ordinal identik dengan pengukuran yang menghasilkan data berupa peringkat atau level. Semisal : tingkat kesukaan, tingkat kesetujuaan, dan sejenisnya. Selain terkait dengan skala ukur ordinal, pada bahasan analisis regresi logit, kita pun sudah cukup banyak mengupas konsepsi penggunaan variabel dependent (Y) dengan nilai biner (0 dan 1) sehingga muncullah istilah odds dan odds ratio dalam konsep interpretasinya.

Nah jika para peneliti sudah mengenal dan memahami apa yang dimaksud dengan skala ukur ordinal dan analisis regresi logit, maka dalam pemahaman terhadap konsep analisis regresi ordinal akan cukup mudah. Karena dalam penerapannya analisis regresi ordinal memadukan antara skala ukur data ordinal pada variabel dependen (Y) pada konsepsi regresi, sehingga dalam proses perhitungannya identik dengan proses perhitungan analisis regresi logit. Yang membedakan hanyalah dari segi kombinasi persamaan regresi yang dihasilkan dari suatu konsepsi variabel dependen (Y) yang berupa tingkatan (lebih dari 2 tingkatan).

Lebih lanjut terkait dengan konsepsi analisis regresi ordinal akan kita uraikan pada bagian selanjutnya.

Konsep Regresi Ordinal

Regresi logistik ordinal adalah pemodelan regresi logistik untuk data variabel tak bebas (Y) dengan respons kategorik ordinal non-biner (kategorik ordinal dengan jumlah kategori lebih daripada dua). Pengolahan data pada regresi logistik ordinal tetap dilakukan dengan menggunakan himpunan nilai variabel bebas (X) yang sama, memisahkannya ke dalam dua bagian dengan respons modifikasi YM = 1 dan YM = 0 seperti pada regresi logistik biasa, tetapi dilakukan secara berulang dengan memindah-mindahkan titik cutoff untuk variabel respons-nya.

Misalkan dimiliki data dengan variabel tak bebas (Y) kategorik ordinal yang memiliki 4 kategori, yaitu kategori I, II, III, dan IV. Maka regresi logistik biasa dilakukan 3 kali terhadap himpunan nilai variabel bebas (X) yang sama, tetapi respons kategori I vs II-III-IV, respons kategori I-II vs III-IV, dan respons kategori I-II-III vs IV. Ketiga titik cutoff variabel respons akan menjadi estimator konstanta dalam tiap model.

cut off regresi ordinal

Gambar 1. Cut off Persamaan Regresi Ordinal 4 kategori

Sebagai hasil akan diperoleh 3 model regresi dengan estimasi koefisien regresi yang sama (karena menggunakan himpunan nilai variabel bebas (X) yang sama), namun dengan konstanta berbeda (karena menggunakan titik cutoff respons yang berbeda). Ketiga model ini biasanya disebut sebagai 1 model regresi saja, yaitu:

persamaan regresi ordinal

Akan terlihat perbedaanya jika sudah kita proses pemodelannya dengan menggunakan data riil dan aplikasi (salah satunya dengan SPSS). Sehingga bentuk model dan jumlah model yang terbentuk dari hasil variabel dependen yang merupakan data dengan skala ukur ordinal terlihat jelas.

Secara prinsip pengerjaan regresi ordinal serupa dengan regresi logit data biner. Perbedaannya adalah dalam hal banyaknya model regresi yang terbentuk dan kaitannya dengan fungsi pengelompokan. Lebih lanjut para peneliti atau data master bisa mempelajari melalui literatur yang lebih lengkap. Pada kesempatan yang lain kita akan coba perlihatkan pembentukan model regresi ordinal dengan menggunakan software SPSS, agar apa yang telah diuraikan dalam konsepsi regresi ordinal pada artikel ini dapat terlihat jelas pada output SPSS hasil pengolahan data riil. SEMANGAT MEMPELAJARI!!!

Sumber Buku : Johan Harlan, Univ. Gunadarma.

————————————————————————————————————————————————————————————

Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian, aplikasi software statistik ataupun olahdata.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

————————————————————————————————————————————————————————————