Autokorelasi Spasial Dengan Geoda

Autokorelasi Spasial Dengan Geoda

Pada kesempatan sebelumnya kita sudah membahas dan menguraikan salah satu asumsi data pada analisis regresi spasial yaitu terkait dengan identifikasi ada atau tidaknya autokorelasi spasial pada data yang kita miliki. Salah satu statistik yang kita ukur adalah Indeks Moran, baik itu dalam konsepsi Global (keseluruhan data) maupun yang bersifat lokal.

Nah pada kesempatan kali ini kita akan coba ulas pengaplikasiannya dengan menggunakan software Geoda. Selain pada software ArcGis, pada software Geoda pun difasilitasi perhitungan Indeks Moran dan cenderung lebih mudah tahapannya dibandingkan proses pada ArcGis. Jadi untuk peneliti yang tidak mempunyai basic penguasaan aplikasi ArcGis (aplikasi pembuatan peta), untuk mengidentifikasi autokorelasi spasial pada data sangat disarankan untuk menggunakan software Geoda.

Berikut kita uraikan tahapan pada software Geoda untuk mencari atau mengindentifikasi efek spasial pada data dengan menggunakan statistik Indeks Moran.

1. Pastikan file yang kita siapkan untuk diolah dengan sofware Geoda salah satunya adalah dalam format .shp. Perlu diperhatikan juga jika data yang akan diolah dengan software Geoda sudah termasuk didalamnya data yang akan di analisis. Jika antara file peta .shp dan data masih terpisah (format .xls), untuk menyatukan antar 2 (dua) file yang berbeda format dapat menggunakan software OpenJump.

2. Jika file yang akan dianalisis sudah siap, buka sofware Geoda yang sudah terinstall seperti tampak pada gambar berikut.

3. Setelahnya klik folder pada kolom Input File, lalu pilih file yang akan digunakan dalam penelitian yang sudah mengandung data penelitian yang akan di analisis dalam bentuk format .shp, seperti tampak pada gambar berikut.

4. Jika sudah kita masukan file penelitian kita pada software Geoda dengan klik OK, maka akan muncul gambar peta penelitian yang akan dianalisis seperti tampak pada gambar berikut.

5. Untuk melihat data apa saja yang tekandung dalam peta data yang sudah dimasukan kedalam software Geoda, pada tool bar menu dapat meng-klik simbol tabel (disamping simbol weight – W). Jika data .shp yang kita masukan ke software Geoda merupakan peta tematik pada umumnya, umumnya tabel akan berisi informasi umum wilayah sesuai dengan lokasi peta (desa, kabupaten/kota, provinsi, koordinat dll). Jika peta yang dinputkan sesuai dengan poin 1 (satu) maka pada tabel akan muncul tambahan data penelitian yang akan dianalisis lebih lanjut.

6. Langkah selanjutnya adalah menentukan dan mendefinisikan nilai pembobot. Pada tahap ini kita akan mendefinisikan jenis pembobot berdasarkan input data kewilayahan dan tipe pembobot (silahkan baca artikel kita tentang “Autokorelasi Spasial’), seperti tampak pada gambar berikut,

Menu Pendefinisian Pembobot “Weights Manager”

Jendela Input Pembobotan

7. Setelah muncul tampilan software Geoda seperti pada poin sebelumnya, kita klik menu “Creat” untuk membentuk fungsi pembobot baru (jika belum ada) dan “Load” untuk menampilkan fungsi pembobot yang sudah kita buat sebelumnya. Dengan klik menu “Creat” maka akan muncul jendela pendefinisian sebagai berikut,

8. Isi kolom “Weight File ID Variabel” dengan nama file primary key pada data penelitian yang kita miliki, biasanya variabel yang dimaksudkan disini adalah kode wilayah (base data kependudukan atau penomoran wilayah secara lokal maupun nasional). Lalu masukan tipe pembobot kewilayahan yang kita konsepkan pada wilayah penelitian yang akan kita analisis. (silahkan baca artikel kita tentang “Autokorelasi Spasial’). Setelahnya klik Create maka akan diarahkan untuk menyimpan file output hasil dan akan tampak gambar seperti berikut,

Pendefinisian Variabel ID dan Tipe Pembobotan Wilayah

Pembobot Kewilayahan Berhasil Dibuat

9. Setelah proses pendefinisian variabel dan pembobot selesai kita buat berdasarkan pada poin sebelumnya. Langkah selanjutnya adalah pengujian autokorelasi spasial dengan menggunakan Moran’s I Global dan Lokal (LISA). Bagi peneliti yang baru menemukan artikel ini silahkan pelajari artikel kita tentang “Autokorelasi Spasial”. Kita dapat melakukan kedua analisis tersebut pada menu “Space” klik “Univariate Moran’s I” untuk mengujikan autokorelasi spasial Global untuk variabel tunggal dan “Univariate Local Moran’s I” untuk mengujikan autokorelasi spasial Lokal. Seperti tampak pada gambar berikut.

10. Setelah meng-klik “Univariate Moran’s I” untuk menguji nilai Moran’s I Global maka langkah selanjutnya adalah memilih variabel yang akan kita ujikan keterkaitan (autokorelasi) kewilayahannya. Pada umumnya dalam konsep regresi spasial yang diujikan autokorelasinya cukup pada variabel dependen (Y), akan tetapi jika diperlukan pembuktian untuk variabel independen peneliti dapat melakukan pengujian dengan tahapan yang sama dan akan tampak seperti gambar berikut.

11. Setelah klik “OK” maka software Geoda akan memproses pencarian nilai Moran’s I Global. Dan akan menghasilkan output seperti tampak pada gambar berikut.

Output Moran’s I Global

12. Dengan tahapan yang sama dengan memilih analisis “Univariate Local Moran’s I” maka akan dihasilkan output Moran’s I Lokal (LISA) seperti tampak pada gambar berikut.

Peta Klaster Wilayah Berdasarkan Kuadran

Peta Klaster Wilayah Berdasarkan Signifikansi Nilai Moran’s I Lokal

Hal yang perlu diperhatikan oleh peneliti atau data master adalah pemahaman secara utuh tentang penggunaan autokorelasi spasial itu sendiri. SEMANGAT MENELITI. 

—————————————————————————————————————————————————————————

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

2. Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————————

Autokorelasi Spasial

Autokorelasi Spasial

Pada kesempatan yang lalu kita sudah membahas permasalahan regresi kaitannya dengan aspek keruangan (spasial), yaitu kita curigai salah satu indikatornya adalah tidak terpenuhinya asumsi klasik non heteroskedastisitas pada data yang kita miliki dimana data yang kita miliki memiliki unsur keruangan atau spasial. Sehingga munculah istilah model regresi terboboti pada aspek keruangan (spasial). Sedangkan jika data yang kita miliki tidak miliki aspek keruangan atau spasial maka yang muncul adalah regresi terboboti dengan jenis bobot disesuaikan pada jenis data yang kita miliki.

Nah pada kesempatan kali ini, kita akan coba uraikan salah satu indikator lainnya yang menjadi pertimbangan dalam penggunaan regresi terboboti pada aspek keruangan atau spasial. Indikator tersebut adalah Autokorelasi Spasial. Konsep autokorelasi pun muncul dalam regresi dalam bahasan pengujian asumsi klasik regresi, yaitu adanya korelasi atau saling berhubungannya antar data pengamatan, dalam konteks asumsi klasik regresi peneliti mempertimbangkan ada atau tidaknya korelasi antar residual yang dihasilkan oleh model regresi sedangkan pada regresi terboboti spasial peneliti mempertimbangkan ada atau tidaknya korelasi data pengamatan antar wilayah satu dengan yang lainnya.

Berdasarkan pada konsepsi autokorelasi spasial ini lah, menjadi penting bagi peneliti yang memiliki data pengamatan yang terdapat unsur keruangan atau spasial dalam proses pemodelannya untuk dibuktikan terlebih dahulu apakah autokorelasi terjadi dan signifikan antar wilayah pada data pengamatan yang dimiliki. Seperti halnya pada analisis data deret waktu, jika memang autokorelasi antar data pengamatan tidak terjadi maka cukuplah dilakukan analisis regresi pada umumnya tanpa mempertimbangkan aspek keruangannya.

Setidaknya terdapat 2 (dua) ukuran umum yang dapat digunakan oleh peneliti untuk menidentifikasi ada tidaknya autokorelasi spasial pada data pengamatan yang dimiliki yaitu nilai Moran I yang digunakan untuk mengenali autokorelasi spasial secara global atas sekumpulan data pengamatan dan LISA yang merupakan nilai Moran I lokal untuk mengindentifikasi secara spesifik autokorelasi spasial tiap data pengamatan. Lebih lanjut penjelasan tentang kedua nilai Moran tersebut diuraikan pada bagian berikut.

Matriks Pembobot

Matriks pembobot spasial disebut juga matriks yang menggambarkan kekuatan interaksi antar lokasi. Gambar berikut menunjukkan kedekatan posisi atau letak suatu lokasi dengan lokasi lainnya.

Ilustrasi Pendekatan Pembobot Spasial

Menurut Anselin (1995), matriks pembobot dapat dibedakan menjadi tiga pendekatan, diantaranya :

  1. Rook Contiguity, daerah pengamatannya ditentukan berdasarkan sisi-sisi yang saling bersinggungan dan sudut tidak diperhitungkan.
  2. Bishop Contiguity, daerah pengamatannya ditentukan berdasarkan sudut-sudut yang saling bersinggungan dan sisi tidak diperhitungkan.
  3. Queen Contiguity, daerah pengamatannya ditentukan berdasarkan sisi-sisi yang saling bersinggungan dan sudut juga diperhitungkan.

Matriks pembobot spasial W dapat diperoleh dari dua cara yaitu matriks pembobot terstandarisasi dan matriks bobot tidak terstandarisasi. Matriks pembobot terstandarisasi merupakan matriks pembobot yang diperoleh dengan cara memberikan bobot yang sama rata terhadap tetangga lokasi terdekat dan yang lainnya nol, sedangkan matriks pembobot tak terstandarisasi merupakan matriks pembobot yang diperoleh dengan cara memberikan bobot satu bagi tetangga terdekat dan yang lainnya nol. Pemahaman terhadap pembobotan ini penting untuk menentukan fungsi yang digunakan dalam perhitungan Indeks Moran’s I dan pengaplikasian pada software Geoda nantinya.

Indek Moran’s I (Global)

Koefisien Moran’s I digunakan untuk menguji dependensi spasial atau autokorelasi spasial antar amatan atau lokasi. Dimana nilai indeks Moran’s I terletak antara -1 dan 1. Pengujian statistik Moran’s I melalui pendekatan distribusi peluang Z dengan statistik uji |Zhitung| > Zα/2 dikatakan bahwa pada data terdapat autokorelasi spasial.

Diagram Kuadran Moran’s I Output Sofware GeoDa

Pola pengelompokan dan penyebaran antar lokasi dapat disajikan dengan Moran’s Scatterplot seperti tampak pada gambar di atas, yang menunjukkan hubungan antara nilai amatan pada suatu lokasi (distandarisasi) dengan rata-rata nilai amatan dari lokasi-lokasi yang bertetanggaan dengan lokasi yang bersangkutan (Lee dan Wong, 2001). Scatterplot tersebut terdiri atas 4 (empat) kuadran yaitu

  1. Kuadran I (HighHigh), menunjukkan lokasi yang mempunyai nilai amatan tinggi dikelilingi oleh lokasi yang mempunyai nilai amatan tinggi.
  2. Kuadran II (LowHigh), menunjukkan lokasi yang mempunyai nilai amatan rendah dikelilingi oleh lokasi yang mempunyai nilai amatan tinggi
  3. Kuadran III (LowLow), menunjukkan lokasi yang mempunyai nilai amatan rendah dikelilingi oleh lokasi yang mempunyai nilai amatan rendah
  4. Kuadran IV (HighLow), menunjukkan lokasi yang mempunyai nilai amatan tinggi dikelilingi oleh lokasi yang mempunyai nilai amatan rendah.

Hasil dari perhitungan nilai Moran’s I Global ini memberikan gambaran umum mengenai keterkaitan secara spasial atas data penelitian yang diujikan. Yang nantinya secara spesifik (tiap wilayah) keterikatanya secara spasial akan dijelaskan oleh nilai Moran’s I lokal (LISA).

Local Indicator of Spatial Autocorrelation (LISA)

Moran’s I juga dapat digunakan untuk mengidentifikasi koefisien autocorrelation secara lokal (local autocorrelation) atau korelasi spasial pada tiap daerah. Semakin tinggi nilai lokal Moran’s I memberikan informasi bahwa wilayah yang berdekatan memiliki nilai yang hampir sama atau membentuk suatu penyebaran yang mengelompok. Indentifikasi Moran’s I tersebut adalah Local Indicator of Spatial Autocorrelation (LISA). (Lee dan Wong, 2001)

Peta Kalster Moran’s I (LISA) Output Sofware Geoda

Peta Signifikansi Moran’s I (LISA) Output Sofware Geoda

Dari perhitungan LISA inilah kita dapat mengidentifikasi secara spasial atas data yang diujikan keterikatan dan signifikansinya berdasarkan aspek spasial secara lokal untuk memperkuat dan mempertegas hasil yang dihasilkan oleh pengujian secara global (Moran’s I Global).

Secara garis besar analisis autokorelasi spasial yang dihasilkan dari konsep teori dan diaplikasi dengan menggunakan software (misal : Geoda), terdiri dari 2 (dua) bagian besar yaitu menguji signifikasi autokorelasi spasial secara global dan menguji signifikasi autokorelasi secara lokal. Hal ini menunjang nantinya dalam analisis model spasial yang dihasilkan oleh software (misal : GWR4), dimana akan dihasilkan model secara Global dan model Spasial. Ini menjadi penting agar nantinya peneliti tidak memaksakan model regresi terbobot spasial tanpa didukung adanya efek spasial yang sigfinikan pada data penelitian yang dimiliki..

Hal yang perlu diperhatikan oleh peneliti atau data master adalah pemahaman secara utuh tentang penggunaan regresi spasial itu sendiri. Pada kesempatan lainnya kita akan coba memperlihatkan penggunaan software Goeda dalam menganalisis autokorelasi spasial pada data penelitian. SEMANGAT MENELITI. 

————————————————————————————————————————————————————————

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

2. Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

————————————————————————————————————————————————————————

Survey Lapangan Industri Komponen Otomotif Nasional

Survey Lapangan Industri Komponen Otomotif Nasional

Pada kesempatan kali ini kita akan sharing pengalaman kita di lapangan, survey lapangan atau sebar kuesioner, yang berbeda dengan sharing pada kesempatan sebelumnya. Survey lapangan atau sebar kuesioner kali ini, hendak menggali informasi atau perspektif dari para manager s.d direktur pada industri komponen otomotif di wilayah JABODETABEK, tepatnya informasi atau perspektif dalam hal pengaruh Orientasi Pembelajaran,  Pembaruan Strategi, dan Pemanfaatan Teknologi Informasi dan Komunikasi terhadap Kapabilitas Inovasi dan Kinerja Perusahaan. Sekali lagi bahwa persiapan fisik maupun pengetahuan terhadap medan lapangan yang akan dijadikan sasaran pengambilan data haruslah diperhatikan. Karena banyak hal-hal yang tidak bisa kita prediksikan dapat terjadi dan menjadi tantangan tersendiri di lapangan.

Objek dari survey lapangan atau sebar kuesioner lapangan kali ini dalam kategori sangat kompleks. Target spesifik yang menjadi kriteria dari responden adalah karyawan pada level Manager s.d Direktur pada industri komponen otomotif di wilayah Jabodetabek. Kategori kompleks di sini adalah dimulai dari prosedural, biaya dan waktu serta effort tim lapangan.

Proses survey yang sangat challenging yang tim kita temui di lapangan, well  planning dan well strategy dalam melakukan survey lapangan kali ini sangat diperlukan sekali, sekali lagi cost and time effective dalam penelitian. Calon responden yang kita hadapi adalah responden memiliki kecenderungan untuk menolak sangat tinggi dikarenakan frame bermanfaatnya research dan traffic kerja di industri komponen otomotif menjadi tantangan tersendiri di lapangan.

Saran kita berdasarkan pengalaman di lapangan diperlukan extra time untuk melakukan penelitian dengan kriteria responden dari institusi bisnis besar. Rencana time line research yang harus well planning dan well organized. Networking atau Offering Benefits mungkin bisa jadi instrumen yang dapat mempermudah dan mempercepat dalam proses pengambilan data lapangan.

Sharing singkat ini, semoga bermanfaat dalam membantu rekan-rekan peneliti dalam membangun frame awal sebelum melakukan survey di lapangan. Kami akan share banyak pengalaman kami di lapangan pada kesempatan yang lain. SEMANGAT MENELITI!!!

——————————————————————————————————————————————————————

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

2. Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

——————————————————————————————————————————————————————

Survey Lapangan Pemanfaatan Air Hujan Warga Kota Bekasi

Survey Lapangan Pemanfaatan Air Hujan Warga Kota Bekasi

Pada kesempatan kali ini kita akan sharing pengalaman kita di lapangan, survey lapangan atau sebar kuesioner, yang berbeda dengan sharing pada kesempatan sebelumnya. Survey lapangan atau sebar kuesioner kali ini, hendak menggali informasi atau perspektif dari warga masyarakat di kota Bekasi Raya (12 kecamatan), guna mendapatkan informasi terkait pengetahuan dan kemauan dalam rangka pemanfaatan air hujan di Kota Bekasi sebagai upaya konservasi air. Sekali lagi bahwa persiapan fisik maupun pengetahuan terhadap medan lapangan yang akan dijadikan sasaran pengambilan data haruslah diperhatikan. Karena banyak hal-hal yang tidak bisa kita prediksikan dapat terjadi dan menjadi tantangan tersendiri di lapangan.

Objek dari survey lapangan atau sebar kuesioner lapangan kali ini dalam kategori gampang-gampang susah. Target spesifik yang menjadi kriteria dari responden adalah warga masyarakat (kepala keluarga) yang tinggal atau berdomisili di wilayah Kota Bekasi. Kriteria objek yang cukup mudah pada perkiraan awal karena seperti kita tahu bahwa warga masyarakat biasanya welcome dengan riset, apalagi dilakukan kaitannya dengan pendidikan. Pada realitanya didapati pula kesulitan tertentu, di antaranya adalah faktor kesediaan responden dan waktu yang tepat dalam bertemu dengan calon responden dan resistensi calon responden pada masa pandemi Covid-19. Sehingga diperlukan effort ekstra tidak hanya proses komunikasi yang diharuskan baik, akan tetapi extra time agar didapatkan waktu pas untuk bertemu target responden (week end dan waktu sore hingga malam hari) serta disiplin protokol kesehatan oleh tim lapangan.

Crew lapangan yang diturunkan pada survey lapangan kali ini sebanyak 4 orang. Rata-rata tenaga yang kita pakai berusia antara 20 s.d 25 tahun. Selain muda semangatnya pun OK untuk menjaga kualitas hasil survey yang kita lakukan. Selain itu, crew yang well educated (rata-rata sedang menempuh perkuliahan) memberikan nilai plus tersendiri, selain dari pola bahasa dalam komunikasi yang baik, yang terpenting behave yang menyenangkan bagi responden kita.

Meskipun relatif tidak ada kendala yang berarti di lapangan yang tim kita temui, planning dan strategi yang terukur dalam melakukan survey lapangan tetap perlu diperhatikan. Perlu pendekatan kepada para tokoh masyarakat (RT dan RW setempat) agar penerimaan warga terhadap tim lapangan kita tidak terkendala. Dan hal ini memudahkan tim kita dilapangan dalam mendapatkan responden, sehingga berpengaruh pada proses pengambilan data di lapangan yang relatif lebih cepat.

Tools lain yang kita gunakan dalam mendapatkan target sampel adalah gimmick atau souvenir survey, hal sangat sepele tapi sangat bermanfaat dalam proses persuasif kepada calon responden. Meskipun perlu ada budget tambahan dalam RAB peneliti, akan tetapi hal ini worthed untuk dilakukan dalam mempercepat proses survey lapangan.

Sharing singkat ini, semoga bermanfaat dalam membantu rekan-rekan peneliti dalam membangun frame awal sebelum melakukan survey dilapangan. Kami akan share banyak pengalaman kami di lapangan pada kesempatan yang lain. SEMANGAT MENELITI!!!

———————————————————————————————————————————————————————–

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

2. Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

———————————————————————————————————————————————————————–

Online Survey Customer Luxury Brand di Indonesia

Online Survey Customer Luxury Brand di Indonesia

Pada kesempatan kali ini kita akan sharing pengalaman kita di lapangan, survey online atau sebar kuesioner online, yang berbeda dengan sharing pada kesempatan sebelumnya. Survey online atau sebar kuesioner online kali ini, hendak menggali informasi atau perspektif dari para Customer atau Pengguna barang-barang bermerk (luxury brand : Chanel, Gucci, Louis Vuitton, dll), tepatnya informasi atau perspektif dalam hal brand loyalty, perceived quality dan brand knowledge pengaruhnya terhadap affective attitude serta willingness to pay pada Luxury Brand. Sekali lagi bahwa persiapan fisik maupun pengetahuan terhadap medan lapangan yang akan dijadikan sasaran pengambilan data haruslah diperhatikan. Karena banyak hal-hal yang tidak bisa kita prediksikan dapat terjadi dan menjadi tantangan tersendiri di lapangan.

Objek dari survey lapangan atau sebar kuesioner lapangan kali ini dalam kategori sangat kompleks. Target spesifik yang menjadi kriteria dari responden adalah Customer atau pengguna barang-barang bermerk (luxury brand). Kategori kompleks di sini adalah dimulai dari spot responden hingga network pada komunitas-komunitas kaum berada di Jabodetabek.

Proses survey yang sangat challenging yang tim kita temui di lapangan, well  planning dan well strategy dalam melakukan survey lapangan kali ini sangat diperlukan sekali, sekali lagi cost and time effective dalam penelitian. Calon responden yang kita hadapi adalah responden memiliki kecenderungan untuk menolak sangat tinggi dikarenakan frame bermanfaatnya research dan eksklusifitas calon responden menjadi tantangan tersendiri di lapangan.

Saran kita berdasarkan pengalaman di lapangan diperlukan extra time untuk melakukan penelitian dengan kriteria responden dari ekonomi menengah s.d atas. Rencana time line research yang harus well planned dan well organized. Networking atau Offering Benefits mungkin bisa jadi instrumen yang dapat mempermudah dan mempercepat dalam proses pengambilan data lapangan.

Sharing singkat ini, semoga bermanfaat dalam membantu rekan-rekan peneliti dalam membangun frame awal sebelum melakukan survey di lapangan. Kami akan share banyak pengalaman kami di lapangan pada kesempatan yang lain. SEMANGAT MENELITI!!!

——————————————————————————————————————————————————————-

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

——————————————————————————————————————————————————————-

Survey Lapangan Pelanggan Produk UKM di Jakarta dan Surabaya

Survey Lapangan Pelanggan Produk UKM di Jakarta dan Surabaya

Pada kesempatan kali ini kita akan sharing pengalaman kita di lapangan, survey lapangan atau sebar kuesioner, yang berbeda dengan sharing pada kesempatan sebelumnya. Survey lapangan atau sebar kuesioner kali ini, hendak menggali informasi atau perspektif dari para customer loyal produk UKM berbasis Website dan Media Sosial (MedSos) di kota Jakarta dan Surabaya (penelitian lanjutan). Perihal pengalaman dan evaluasi para pelanggan produk UKM terhadap kelengkapan dan kemenarikan Website dan Medsos yang dimiliki UKM dalam menciptakan ketertarikan dan kemudahan dalam melakukan pembelian. Sekali lagi bahwa persiapan fisik maupun pengetahuan terhadap medan lapangan yang akan dijadikan sasaran pengambilan data haruslah diperhatikan. Karena banyak hal-hal yang tidak bisa kita prediksikan dapat terjadi dan menjadi tantangan tersendiri di lapangan.

Objek dari survey lapangan atau sebar kuesioner lapangan kali ini dalam kategori gampang-gampang susah. Target spesifik yang menjadi kriteria dari responden adalah para customer loyal produk UKM berbasis Website dan Media Sosial (MedSos) di kota Jakarta dan Surabaya. Kriteria objek yang cukup mudah pada awalnya karena seperti kita tahu bahwa tren penggunaan Website dan Media Sosial bagi para pedagang atau perusahaan untuk memasarkan produknya dapat sangat memudahkan dan menimbulkan daya tarik bagi para calon pembeli maupun pelanggan loyal. Realitanya diperlukan pengetahuan awal pada lokasi berkumpulnya calon responden (para buyer yang melek internet baik itu via website dan medsos) agar memudahkan dan effective dalam mendapatkan responden. Selain itu, kondisi pandemi Covid 19 menambah tantangan dalam mencari calon responden di lapangan.

Crew lapangan yang diturunkan pada survey lapangan kali ini sebanyak 4 orang untuk 2 kota yaitu Jakarta dan Surabaya. Rata-rata tenaga yang kita pakai berusia antara 20 s.d 25 tahun. Selain muda semangatnya pun OK untuk menjaga kualitas hasil survey yang kita lakukan. Selain itu, crew yang well educated (rata-rata sedang menempuh perkuliahan) memberikan nilai plus tersendiri, selain dari pola bahasa dalam komunikasi yang baik, yang terpenting behave yang menyenangkan bagi responden kita.

Meskipun relatif tidak ada kendala yang berarti di lapangan yang tim kita temui, planning dan strategi yang terukur dalam melakukan survey lapangan tetap perlu diperhatikan (kepatuhan terhadap protocol kesehatan di masa pandemic). Calon responden yang kita hadapi adalah responden yang tetap memiliki kecenderungan untuk menolak karena faktor benefit yang akan didapatkan oleh responden dan keengganan berinteraksi pada saat pandemic. Juga, perlu penjelasan yang persuasif dan ringan agar dapat meyakinkan calon responden atas tujuan survey yang dilakukan tidak menyentuh hal-hal yang sensitif tentang private information yang sangat dijaga kerahasiaanya oleh responden.

Easyness dari proses survey ini adalah jumlah populasi kriteria responden yang sangat banyak, sehingga memudahkan tim lapangan dalam memperoleh target sampel. Tools lain yang kita gunakan dalam mendapatkan target sampel tersebut adalah gimmick atau souvenir survey, hal sangat sepele tapi sangat bermanfaat dalam proses persuasif kepada calon responden. Meskipun perlu ada budget tambahan dalam RAB peneliti, akan tetapi hal ini worthed untuk dilakukan dalam mempercepat proses survey lapangan.

Sharing singkat ini, semoga bermanfaat dalam membantu rekan-rekan peneliti dalam membangun frame awal sebelum melakukan survey dilapangan. Kami akan share banyak pengalaman kami di lapangan pada kesempatan yang lain. SEMANGAT MENELITI!!!

—————————————————————————————————————————————————————–

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

2. Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————–

Survey Lapangan Auditor KAP Jakarta Pusat

Survey Lapangan Auditor KAP Jakarta Pusat

Pada kesempatan kali ini kita akan sharing pengalaman kita di lapangan, survey lapangan atau sebar kuesioner, yang berbeda dengan sharing pada kesempatan sebelumnya. Survey lapangan atau sebar kuesioner kali ini, hendak menggali informasi atau perspektif dari para auditor dari KAP terdaftar di kementerian keuangan yang berada  di Kota Jakarta Pusat, tepatnya informasi atau perspektif dalam hal Pengalaman, Independensi dan Kualitas Audit. Sekali lagi bahwa persiapan fisik maupun pengetahuan terhadap medan lapangan yang akan dijadikan sasaran pengambilan data haruslah diperhatikan. Karena banyak hal-hal yang tidak bisa kita prediksikan dapat terjadi dan menjadi tantangan tersendiri di lapangan.

Objek dari survey lapangan atau sebar kuesioner lapangan kali ini dalam kategori sangat kompleks. Target spesifik yang menjadi kriteria dari responden adalah para auditor dari berbagai masa kerja di KAP yang berada di Kota Jakarta Pusat. Kategori kompleks di sini adalah dimulai dari prosedural, biaya dan waktu serta effort tim lapangan.

Crew lapangan yang diturunkan pada survey lapangan kali ini sebanyak 2 orang. Crew yang well educated, bermental OK, PeDe, memiliki komunikasi yang baik dan behave yang menyenangkan bagi responden. So, right person is a must.

Proses survey yang sangat challenging yang tim kita temui di lapangan, well  planning dan well strategy dalam melakukan survey lapangan kali ini sangat diperlukan sekali, sekali lagi cost and time effective dalam penelitian. Calon responden yang kita hadapi adalah responden memiliki kecenderungan untuk menolak sangat tinggi dikarenakan frame bermanfaatnya research dan traffic kerja di KAP menjadi tantangan tersendiri di lapangan.

Saran kita berdasarkan pengalaman di lapangan diperlukan extra time untuk melakukan penelitian dengan kriteria responden dari institusi private. Rencana time line research yang harus well planning dan well organized. Networking atau Offering Benefits mungkin bisa jadi instrumen yang dapat mempermudah dan mempercepat dalam proses pengambilan data lapangan.

Sharing singkat ini, semoga bermanfaat dalam membantu rekan-rekan peneliti dalam membangun frame awal sebelum melakukan survey di lapangan. Kami akan share banyak pengalaman kami di lapangan pada kesempatan yang lain. SEMANGAT MENELITI!!!

—————————————————————————————————————————————————————

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

2. Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————

Online Survey Bikers Indonesia

Online Survey Bikers Indonesia

Pada kesempatan kali ini kita akan sharing pengalaman kita di lapangan, online survey atau sebar kuesioner online, yang berbeda dengan sharing pada kesempatan sebelumnya. Survey Online atau sebar kuesioner online kali ini, hendak menggali informasi atau perspektif dari para pengemudi motor atau bikers di Indonesia, perihal pola penggunaan sebelum adanya pandemic Covid-19 dan pola penggunaan setelah penerapan PSSB dilakukan. Sekali lagi bahwa persiapan fisik maupun pengetahuan terhadap medan lapangan yang akan dijadikan sasaran pengambilan data haruslah diperhatikan. Karena banyak hal-hal yang tidak bisa kita prediksikan dapat terjadi dan menjadi tantangan tersendiri di lapangan.

Objek dari survey lapangan atau sebar kuesioner lapangan kali ini dalam kategori gampang-gampang susah. Target spesifik yang menjadi kriteria dari responden adalah para pengemudi motor atau bikers di Indonesia. Kriteria objek yang cukup mudah pada awalnya karena seperti kita tahu bahwa para pengguna transportasi roda 2 (dua) sangat banyak sehingga untuk mendapatkan objek pengguna pun relatif lebih mudah pada awalnya. Realitanya diperlukan effort yang cukup lumayan dikarenakan dilakukan secara online.

Crew lapangan yang diturunkan pada survey lapangan kali ini sebanyak 2 orang. Rata-rata tenaga yang kita pakai berusia antara 20 s.d 25 tahun. Selain muda semangatnya pun OK untuk menjaga kualitas hasil survey yang kita lakukan. Selain itu, crew yang well educated (rata-rata sedang menempuh perkuliahan) memberikan nilai plus tersendiri, selain dari pola bahasa dalam komunikasi yang baik, yang terpenting behave yang menyenangkan bagi responden kita.

Meskipun relatif tidak ada kendala yang berarti di lapangan yang tim kita temui, planning dan strategi yang terukur dalam melakukan survey online tetap perlu diperhatikan. Calon responden yang kita hadapi adalah responden yang tetap memiliki kecenderungan untuk menolak karena faktor benefit yang akan didapatkan oleh responnden. Selain itu, perlu penjelasan yang persuasif dan ringan agar dapat meyakinkan calon responden atas tujuan survey yang dilakukan tidak menyentuh hal-hal yang sensitif tentang private information yang sangat dijaga kerahasiaanya oleh responden.

Easyness dari proses survey ini adalah jumlah populasi kriteria responden yang sangat banyak, sehingga memudahkan tim lapangan dalam memperoleh target sampel. Tools lain yang kita gunakan dalam mendapatkan target sampel tersebut adalah gimmick atau souvenir survey atau voucher survey, hal sangat sepele tapi sangat bermanfaat dalam proses persuasif kepada calon responden. Meskipun perlu ada budget tambahan dalam RAB peneliti, akan tetapi hal ini worthed untuk dilakukan dalam mempercepat proses survey lapangan.

Sharing singkat ini, semoga bermanfaat dalam membantu rekan-rekan peneliti dalam membangun frame awal sebelum melakukan survey dilapangan. Kami akan share banyak pengalaman kami di lapangan pada kesempatan yang lain. SEMANGAT MENELITI!!!

—————————————————————————————————————————————————————–

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

2. Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————–

Survey Lapangan Auditor KAP Jakarta

Survey Lapangan Auditor KAP Jakarta

Pada kesempatan kali ini kita akan sharing pengalaman kita di lapangan, survey lapangan atau sebar kuesioner, yang berbeda dengan sharing pada kesempatan sebelumnya. Survey lapangan atau sebar kuesioner kali ini, hendak menggali informasi atau perspektif dari para auditor dari KAP terdaftar di kementerian keuangan yang berada  di Kota JAKARTA, tepatnya informasi atau perspektif dalam hal Independensi, Pengalaman Audit, Beban Kerja, dan Fee Audit terhadap Kualitas Audit. Sekali lagi bahwa persiapan fisik maupun pengetahuan terhadap medan lapangan yang akan dijadikan sasaran pengambilan data haruslah diperhatikan. Karena banyak hal-hal yang tidak bisa kita prediksikan dapat terjadi dan menjadi tantangan tersendiri di lapangan.

Objek dari survey lapangan atau sebar kuesioner lapangan kali ini dalam kategori sangat kompleks. Target spesifik yang menjadi kriteria dari responden adalah para auditor dari berbagai masa kerja di KAP yang berada di Kota JAKARTA. Kategori kompleks di sini adalah dimulai dari prosedural, biaya dan waktu serta effort tim lapangan.

Crew lapangan yang diturunkan pada survey lapangan kali ini sebanyak 2 orang. Crew yang well educated, bermental OK, PeDe, memiliki komunikasi yang baik dan behave yang menyenangkan bagi responden. So, right person is a must.

Proses survey yang sangat challenging yang tim kita temui di lapangan, well  planning dan well strategy dalam melakukan survey lapangan kali ini sangat diperlukan sekali, sekali lagi cost and time effective dalam penelitian. Calon responden yang kita hadapi adalah responden memiliki kecenderungan untuk menolak sangat tinggi dikarenakan frame bermanfaatnya research dan traffic kerja di KAP menjadi tantangan tersendiri di lapangan.

Saran kita berdasarkan pengalaman di lapangan diperlukan extra time untuk melakukan penelitian dengan kriteria responden dari institusi private. Rencana time line research yang harus well planning dan well organized. Networking atau Offering Benefits mungkin bisa jadi instrumen yang dapat mempermudah dan mempercepat dalam proses pengambilan data lapangan.

Sharing singkat ini, semoga bermanfaat dalam membantu rekan-rekan peneliti dalam membangun frame awal sebelum melakukan survey di lapangan. Kami akan share banyak pengalaman kami di lapangan pada kesempatan yang lain. SEMANGAT MENELITI!!!

—————————————————————————————————————————————————————

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

2. Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

—————————————————————————————————————————————————————

Survey Lapangan Layanan Terminal 3 Bandara Soekarno-Hatta

Survey Lapangan Layanan Terminal 3 Bandara Soekarno-Hatta

Pada kesempatan kali ini kita akan sharing pengalaman kita di lapangan, survey lapangan atau sebar kuesioner, yang berbeda dengan sharing pada kesempatan sebelumnya. Survey lapangan atau sebar kuesioner kali ini, hendak menggali informasi atau perspektif dari para pengguna atau penumpang pesawat terbang di Terminal 3 bandara Seokarno-Hatta, Tangerang, tepatnya informasi atau perspektif dalam hal peningkatan kualitas jasa di Terminal 3 Bandara Soekarno Hatta (GAP Analysis). Sekali lagi bahwa persiapan fisik maupun pengetahuan terhadap medan lapangan yang akan dijadikan sasaran pengambilan data haruslah diperhatikan. Karena banyak hal-hal yang tidak bisa kita prediksikan dapat terjadi dan menjadi tantangan tersendiri di lapangan.

Objek dari survey lapangan atau sebar kuesioner lapangan kali ini dalam kategori sangat kompleks. Target spesifik yang menjadi kriteria dari responden adalah para pengguna atau penumpang pesawat terbang di Terminal 3 bandara Seokarno-Hatta, Tangerang. Kategori kompleks di sini adalah dimulai dari prosedural, biaya dan waktu serta effort tim lapangan. Terlebih lagi dimasa pandemi Covid 19, dimana protokol kesehatan sangat diperhatikan sekali.

Proses survey yang sangat challenging yang tim kita temui di lapangan, well  planning dan well strategy dalam melakukan survey lapangan kali ini sangat diperlukan sekali, sekali lagi cost and time effective dalam penelitian. Calon responden yang kita hadapi adalah responden memiliki kecenderungan untuk menolak sangat tinggi dikarenakan frame bermanfaatnya research dan resistensi calon responden yang tidak dikenal di masa pandemi Covid 19, menjadi tantangan tersendiri di lapangan.

Suasana Terminal 3 Dimasa Covid-19

Saran kita berdasarkan pengalaman di lapangan diperlukan extra time untuk melakukan penelitian dengan kriteria responden di lokasi bandara dengan kondsi pandemi Covid 19. Rencana time line research yang harus well planning dan well organized. Kepatuhan terhadap protokol kesehatan atau Offering Benefits mungkin bisa jadi instrumen yang dapat mempermudah dan mempercepat dalam proses pengambilan data lapangan.

Sharing singkat ini, semoga bermanfaat dalam membantu rekan-rekan peneliti dalam membangun frame awal sebelum melakukan survey di lapangan. Kami akan share banyak pengalaman kami di lapangan pada kesempatan yang lain. SEMANGAT MENELITI!!!

——————————————————————————————————————————————–

1. Jika rekan peneliti memerlukan bantuan survey lapangan, data entry ataupun olahdata dapat menghubungi mobilestatistik.com :

2, Klik “Konsultasi Gratis” untuk mendapatkan informasi atau solusi terkait dengan pertanyaan-pertanyaan seputar metodologi penelitian.

  • “1st Kirim Pertanyaan, Pasti Kami Jawab . . . InsyaAllah”

——————————————————————————————————————————————–